Publications by authors named "Miguel Stevens"

Detection dogs were trained to detect SARS-CoV-2 infection based on armpit sweat odor. Sweat samples were collected using cotton pads under the armpits of negative and positive human patients, confirmed by qPCR, for periods of 15-30 min. Multiple hospitals and organizations throughout Belgium participated in this study.

View Article and Find Full Text PDF

CRM1-mediated nucleocytoplasmic transport plays an important role in many cellular processes and diseases. To investigate the structural basis required for the inhibition of the CRM1-mediated nuclear export we have synthesized analogs of a previously identified small molecule lead compound and monitored their activity against the Rev function of the human immunodeficiency virus. Microscopy studies show that the active congeners of this series inhibit the nucleocytoplasmic transport of Rev and the co-localization between Rev and CRM1 in living cells.

View Article and Find Full Text PDF

On the basis of our recent findings that 6-aminoquinolones inhibit the HIV Tat-mediated transactivation, we have designed a broad series of derivatives identifying novel potent agents such as the 6-desfluoroquinolones 24 (HM12) and 27 (HM13), which showed pronounced anti-HIV activity in acutely, chronically, and latently HIV-1 infected cell cultures. We demonstrate here that highly potent molecules can be obtained by optimizing the substituent in the various positions of the quinolone nucleus.

View Article and Find Full Text PDF

This study describes the mechanism of antiviral action of the N-aminoimidazole derivatives which exclusively inhibit retroviruses such as HIV-1, HIV-2, SIV and MSV. These antiretroviral compounds, with lead prototype NR-818, were found to inhibit HIV-1 replication at the transcriptional level. Analysis of each individual step of viral transcription, including transcriptional activation mediated by NF-kappaB, the chromatin remodeling process at the viral promoter and viral mRNA transcription mediated by RNAPII, showed that NR-818 was able to prolong the binding of NF-kappaB to its consensus sequence.

View Article and Find Full Text PDF

Two novel 6-desfluoroquinolone derivatives, HM-12 and HM-13, were evaluated for anti-human immunodeficiency virus (anti-HIV) activity in acutely, chronically, and latently HIV type 1 (HIV-1)-infected cell cultures and were found to behave as potent HIV-1 transcription inhibitors. In order to extend this result in vivo, we developed an artificial hu-SCID mouse model for HIV-1 latency based on SCID mice engrafted with latently HIV-1-infected promyelocytic OM-10.1 cells in which HIV-1 can be reactivated in vivo by the administration of human tumor necrosis factor alpha (hTNF-alpha).

View Article and Find Full Text PDF

The regulation of transcription of the human immunodeficiency virus (HIV) is a complex event that requires the cooperative action of both viral and cellular components. In latently infected resting CD4(+) T cells HIV-1 transcription seems to be repressed by deacetylation events mediated by histone deacetylases (HDACs). Upon reactivation of HIV-1 from latency, HDACs are displaced in response to the recruitment of histone acetyltransferases (HATs) by NF-kappaB or the viral transcriptional activator Tat and result in multiple acetylation events.

View Article and Find Full Text PDF

Pyridine N-oxide derivatives represent a new class of anti-HIV compounds for which some members exclusively inhibit HIV-1 RT, whereas other members act, additionally or alternatively, at a post-integrational event in the replicative cycle of HIV. A prototype pyridine N-oxide derivative, JPL-32, inhibited tumor necrosis factor alpha (TNF-alpha)-induced HIV-1 expression in latently HIV-1-infected OM-10.1 and U1 cells, which could be reversed by the addition of N-acetyl-L-cysteine (NAC).

View Article and Find Full Text PDF

Objectives: Evaluation of a wide variety of pyridine N-oxide derivatives on their inhibitory activity against feline coronavirus (FIPV strain) and human SARS-CoV (Frankfurt strain-1) in cell culture.

Methods: FIPV and SARS-CoV were exposed to confluent Crandel feline kidney (CRFK) and simian kidney (Vero) cell cultures in the presence of serial concentrations of the test compounds. The anti-cytopathic activity of the pyridine N-oxide derivatives was monitored by spectrophotometric analysis.

View Article and Find Full Text PDF

Objectives: Quinolone derivatives have been shown to inhibit human immunodeficiency virus (HIV) replication at the transcriptional level. Recently, a series of new 6-aminoquinolones that are endowed with more pronounced anti-HIV activities compared with the formerly reported quinolone derivatives have been published. These potent 6-aminoquinolones were further evaluated for their broad-spectrum antiviral properties.

View Article and Find Full Text PDF

Pyridine N-oxide derivatives represent a new class of anti-HIV compounds, for which some members exclusively act through inhibition of HIV-1 reverse transcriptase and thus characteristically behave as non-nucleoside reverse transcriptase inhibitors. Other members act, additionally or alternatively, at a post-integrational event in the replication cycle of HIV, that is, at the level of HIV gene expression. Repeated administration of one of the prototype compounds (JPL-32) to DBA/2 and hu-PBMC-SCID mice demonstrated, in the absence of any acute toxicity, protective activity against HIV-induced destruction of CD4 human T lymphocytes.

View Article and Find Full Text PDF

We have recently discovered that 6-aminoquinolone derivatives could be valid leads for the development of new anti-HIV agents because of their new and diversified mode of action. In fact, studies carried out on the lead WM5 showed that this derivative is able to inhibit the Tat-mediated long terminal repeat driven transcription, an essential step in the HIV-1 replication cycle. Thus, starting from lead WM5, we performed the design and synthesis of an enlarged series of 6-aminoquinolones, which permitted some very potent anti-HIV 6-amino derivatives to be obtained and the structure-activity relationship to be delineated.

View Article and Find Full Text PDF

The phenylmethylthiazolylthiourea (PETT) derivative MSK-076 shows, besides high potency against human immunodeficiency virus type 1 (HIV-1), marked activity against HIV-2 (50% effective concentration, 0.63 microM) in cell culture. Time-of-addition experiments pointed to HIV-2 reverse transcriptase (RT) as the target of action of MSK-076.

View Article and Find Full Text PDF

We have found that novel pyridine oxide derivatives are inhibitors of a wide range of human immunodeficiency virus (HIV) type 1 (HIV-1) and HIV-2 strains in CEM cell cultures. Some of the compounds showed inhibitory activities against recombinant HIV-1 reverse transcriptase (RT), whereas others were totally inactive against this viral protein in vitro. Partial retention of anti-HIV-1 activity against virus strains that contain a variety of mutations characteristic of those for resistance to nonnucleoside RT inhibitors and a lack of inhibitory activity against recombinant HIV-2 RT suggested that these pyridine oxide derivatives possess a mode of antiviral action independent from HIV RT inhibition.

View Article and Find Full Text PDF

A new class of pyridine oxide derivatives as inhibitors of human immunodeficiency virus type 1 (HIV-1) and/or HIV-2 replication in cell culture has been identified. The compounds, which specifically inhibit HIV-1, behave as typical nonnucleoside reverse transcriptase inhibitors (NNRTIs). The most active congener of this group, JPL-133 (UC-B3096), has a 50% effective concentration of 0.

View Article and Find Full Text PDF