Microfluidic electrical impedance flow cytometry is now a well-known and established method for single-cell analysis. Given the richness of the information provided by impedance measurements, this non-invasive and label-free approach can be used in a wide field of applications ranging from simple cell counting to disease diagnostics. One of its major limitations is the variation of the impedance signal with the position of the cell in the sensing area.
View Article and Find Full Text PDFMicroparticle porosity is normally determined in bulk manner providing an ensemble average that hinders establishing the individual role of each microparticle. On the other hand, single particle characterization implies expensive technology. We propose to use ion concentration polarization to measure differences in mesoporosity at the single particle level.
View Article and Find Full Text PDFIn this work, a new method to track particles in microfluidic channels is presented. Particle position tracking in microfluidic systems is crucial to characterize sorting systems or to improve the analysis of cells in impedance flow cytometry studies. By developing an electric field gradient in a two parallel electrode array the position of the particles can be tracked in one axis by impedance analysis.
View Article and Find Full Text PDFA better understanding of the deactivation processes taking place within solid catalysts is vital to design better ones. However, since inter-particle heterogeneities are more a rule than an exception, particle sorting is crucial to analyse single catalyst particles in detail. Microfluidics offers new possibilities to sort catalysts at the single particle level.
View Article and Find Full Text PDF