Publications by authors named "Miguel Reyes Parada"

Mounting evidence from animal models and human studies indicates that psychostimulants can significantly affect social behaviors. This is not surprising considering that the neural circuits underlying the regulation and expression of social behaviors are highly overlapped with those targeted by psychostimulants, which in most cases have strong rewarding and, consequently, addictive properties. In the present work, we provide an overview regarding the effects of illicit and prescription psychostimulants, such as cocaine, amphetamine-type stimulants, methylphenidate or modafinil, upon social behaviors such as social play, maternal behavior, aggression, pair bonding and social cognition and how psychostimulants in both animals and humans alter them.

View Article and Find Full Text PDF

Identifying conserved (similar) three-dimensional patterns among a set of proteins can be helpful for the rational design of polypharmacological drugs. Some available tools allow this identification from a limited perspective, only considering the available information, such as known binding sites or previously annotated structural motifs. Thus, these approaches do not look for similarities among all putative orthosteric and or allosteric bindings sites between protein structures.

View Article and Find Full Text PDF

The identification of similar three-dimensional (3D) amino acid patterns among different proteins might be helpful to explain the polypharmacological profile of many currently used drugs. Also, it would be a reasonable first step for the design of novel multitarget compounds. Most of the current computational tools employed for this aim are limited to the comparisons among known binding sites, and do not consider several additional important 3D patterns such as allosteric sites or other conserved motifs.

View Article and Find Full Text PDF

Oxytocin (OT) and vasopressin (AVP) are hypothalamic neuropeptides classically associated with their regulatory role in reproduction, water homeostasis, and social behaviors. Interestingly, this role has expanded in recent years and has positioned these neuropeptides as therapeutic targets for various neuropsychiatric diseases such as autism, addiction, schizophrenia, depression, and anxiety disorders. Due to the chemical-physical characteristics of these neuropeptides including short half-life, poor blood-brain barrier penetration, promiscuity for AVP and OT receptors (AVP-R, OT-R), novel ligands have been developed in recent decades.

View Article and Find Full Text PDF

The dopamine transporter (DAT) plays a crucial role in the regulation of brain dopamine (DA) homeostasis through the re-uptake of DA back into the presynaptic terminal. In addition to re-uptake, DAT is also able to release DA through a process referred to as DAT-mediated DA efflux. This is the mechanism by which potent and highly addictive psychostimulants, such as amphetamine (AMPH) and its analogues, increase extracellular DA levels in motivational and reward areas of the brain.

View Article and Find Full Text PDF

Cannabis sativa L. is a psychoactive plant that contains more than 500 chemical components. Even though the consumption (in the form of marijuana, hashish, or hashish oil) for recreational purposes, is the most popular way of using the plant, the knowledge of its components has also led to classify Cannabis sativa L.

View Article and Find Full Text PDF

Amphetamine derivatives have been used in a wide variety of pathologies because of their pharmacological properties as psychostimulants, entactogens, anorectics, and antidepressants. However, adverse cardiovascular effects (sympathomimetics) and substance abuse problems (psychotropic and hallucinogenic effects) have limited their use. 4-Methylthioamphetamine (MTA) is an amphetamine derivative that has shown to inhibit monoamine uptake and monoamine oxidase.

View Article and Find Full Text PDF

A series of 27 compounds of general structure 2,3-dihydro-benzo[1,4]oxazin-4-yl)-2-{4-[3-(1-3indolyl)-propyl]-1-piperazinyl}-ethanamides, Series I: (-) and (2-{4-[3-(1-3-indolyl)-propyl]-1-piperazinyl}-acetylamine)--(2-morfolin-4-yl-ethyl)-fluorinated benzamides Series II: (-) were synthesized and evaluated as novel multitarget ligands towards dopamine D receptor, serotonin transporter (SERT), and monoamine oxidase-A (MAO-A) directed to the management of major depressive disorder (MDD). All the assayed compounds showed affinity for SERT in the nanomolar range, with five of them displaying i values from 5 to 10 nM. Compounds , i = 5.

View Article and Find Full Text PDF

Previous preclinical studies have demonstrated that cannabidiol (CBD) and cannabigerol (CBG), two non-psychotomimetic phytocannabinoids from Cannabis sativa, induce neuroprotective effects on toxic and neurodegenerative processes. However, a comparative study of both compounds has not been reported so far, and the targets involved in this effect remain unknown. The ability of CBD and CBG to attenuate the neurotoxicity induced by two insults involving oxidative stress (hydrogen peroxide, HO) and mitochondrial dysfunction (rotenone) was evaluated in neural cell cultures.

View Article and Find Full Text PDF

Zebrafish is becoming a popular animal model in neuropharmacology and drug discovery, mainly due to its ease of handling and low costs involved in maintenance and experimental work. This animal displays a series of complex behaviours that makes it useful for assessing the effects of psychoactive drugs. Here, adult zebrafish were used for assessment of the anxiolytic and anti-addictive properties of UFR2709, a nicotinic receptor (nAChR) antagonist, using two behavioural paradigms to test for addiction, the novel tank diving test to assess anxiety and the conditioned place preference (CPP).

View Article and Find Full Text PDF

During the last decade, the one drug-one target strategy has resulted to be inefficient in facing diseases with complex ethiology like Alzheimer's disease and many others. In this context, the multitarget paradigm has emerged as a promising strategy. Based on this consideration, we aim to develop novel molecules as promiscuous ligands acting in two or more targets at the same time.

View Article and Find Full Text PDF

Amphetamine and its derivatives exhibit a wide range of pharmacological activities, including psychostimulant, hallucinogenic, entactogenic, anorectic, or antidepressant effects. The mechanisms of action underlying these effects are usually related to the ability of the different amphetamines to interact with diverse monoamine transporters or receptors. Moreover, many of these compounds are also potent and selective monoamine oxidase inhibitors.

View Article and Find Full Text PDF

Brain nicotinic acetylcholine receptors (nAChRs), a heterogeneous family of pentameric acetylcholine-gated cation channels, have been suggested as molecular targets for the treatment of alcohol abuse and dependence. Here, we examined the effect of the competitive nAChR antagonist UFR2709 on the alcohol consumption of high-alcohol-drinking UChB rats. UChB rats were given free access to ethanol for 24-h periods in a two-bottle free choice paradigm and their ethanol and water intake were measured.

View Article and Find Full Text PDF

The lateral septum (LS) is a limbic nucleus interconnected with several brain areas involved in the regulation of mood and reward. Vasopressin (AVP) is a neuropeptide that has been related to the effects of drugs of abuse, but its role in the addictive process is poorly understood. LS expresses a high density of AVP 1A receptors (V ).

View Article and Find Full Text PDF

Nicotinic acetylcholine receptors (nAChRs), serotonin transporters (SERT) and dopamine transporters (DAT) represent targets for the development of novel nicotinic derivatives acting as multiligands associated with different health conditions, such as depressive, anxiety and addiction disorders. In the present work, a series of functionalized esters structurally related to acetylcholine and nicotine were synthesized and pharmacologically assayed with respect to these targets. The synthesized compounds were studied in radioligand binding assays at α4β2 nAChR, h-SERT and h-DAT.

View Article and Find Full Text PDF

TASK-3 is a two-pore domain potassium (K) channel highly expressed in the hippocampus, cerebellum, and cortex. TASK-3 has been identified as an oncogenic potassium channel and it is overexpressed in different cancer types. For this reason, the development of new TASK-3 blockers could influence the pharmacological treatment of cancer and several neurological conditions.

View Article and Find Full Text PDF

Neuronal α4β2 nicotinic acetylcholine receptors (nAChRs) are ligand-gated ion channels (LGIC) that have been implicated in nicotine addiction, reward, cognition, pain disorders, anxiety, and depression. Nicotine has been widely used as a template for the synthesis of ligands that prefer α4β2 nAChRs subtypes. The most important therapeutic use for α4β2 nAChRs is as replacement therapy for smoking cessation and withdrawal and the most successful therapeutic ligands are partial agonists.

View Article and Find Full Text PDF

Discovering conserved three-dimensional (3D) patterns among protein structures may provide valuable insights into protein classification, functional annotations or the rational design of multi-target drugs. Thus, several computational tools have been developed to discover and compare protein 3D-patterns. However, most of them only consider previously known 3D-patterns such as orthosteric binding sites or structural motifs.

View Article and Find Full Text PDF

Studies in rats have shown that a decrease in either protein content or total dietary calories results in molecular, structural, and functional changes in the cerebral cortex and hippocampus, among other brain regions, which lead to behavioral disturbances, including learning and memory deficits. The neurobiological bases underlying those effects depend at least in part on fetal programming of the developing brain, which in turn relies on epigenetic regulation of specific genes via stable and heritable modifications of chromatin. Prenatal malnutrition also leads to epigenetic programming of obesity, and obesity on its own can lead to poor cognitive performance in humans and experimental animals, complicating understanding of the factors involved in the fetal programming of neuroplasticity deficits.

View Article and Find Full Text PDF

The study of binding site similarities can be relevant to understand the interaction of different drugs at several molecular targets. The increasing availability of protein crystal structures and the development of novel algorithms designed to evaluate three-dimensional similarities, represent a great opportunity to explore the existence of electronic and shape features shared by clinically relevant proteins, which could assist drug design and discovery. Proteins involved in the recognition of monoaminergic neurotransmitters, such as monoamine transporters or monoamine oxidases (MAO) have been related to several psychiatric and neurological disorders such as depression or Parkinson's disease.

View Article and Find Full Text PDF

Research in programming is focused on the study of stimuli that alters sensitive periods in development, such as prenatal and neonatal stages, that can produce long-term deleterious effects. These effects can occur in various organs or tissues such as the brain, affecting brain circuits and related behaviors. Our laboratory has demonstrated that neonatal programming with sex hormones affects the mesocorticolimbic circuitry, increasing the synthesis and release of dopamine (DA) in striatum and nucleus accumbens (NAcc).

View Article and Find Full Text PDF

A better comprehension on how different molecular components of the serotonergic system contribute to the adequate regulation of behaviors in animals is essential in the interpretation on how they are involved in neuropsychiatric and pathological disorders. It is possible to study these components in "simpler" animal models including the fly Drosophila melanogaster, given that most of the components of the serotonergic system are conserved between vertebrates and invertebrates. Here we decided to advance our understanding on how the serotonin plasma membrane transporter (SERT) contributes to serotonergic neurotransmission and behaviors in Drosophila.

View Article and Find Full Text PDF

A series of novel 3-indolylpropyl derivatives was synthesized and evaluated for their binding affinities at the serotonin-1A receptor subtype (5-HT R) and the 5-HT transporter (SERT). Compounds 11b and 14b exhibited the highest affinities at the 5-HT R (K  = 43 and 56 nM), whereas compounds 11c and 14a were the most potent analogs at the SERT (K  = 34 and 17 nM). On the other hand, compounds 14b and 11d showed potent activity at both targets, displaying a profile that makes them promising leads for the search for novel potent ligands with a dual mechanism of action.

View Article and Find Full Text PDF

Introduction: Polypharmacology, which refers to the ability of a molecule to simultaneously interact with multiple target proteins, is shifting the drug discovery process from a 'one-drug-one-target' paradigm to a conceptual framework in which the multitarget profile of small molecules is proactively pursued. Nicotinic acetylcholine receptors (nAChRs) appear as attractive targets for the design of polypharmacological agents. These proteins participate in the regulation of multiple physiological processes and impressive progress has been made regarding their structure and function.

View Article and Find Full Text PDF