Publications by authors named "Miguel Remondes"

Addiction to psychoactive substances is a maladaptive learned behaviour. Contexts surrounding drug use integrate this aberrant mnemonic process and hold strong relapse-triggering ability. Here, we asked where context and salience might be concurrently represented in the brain during retrieval of drug-context paired associations.

View Article and Find Full Text PDF

Working memory is a fundamental cognitive ability, allowing us to keep information in memory for the time needed to perform a given task. A complex neural circuit fulfills these functions, among which is the anterior cingulate cortex (CG). Functionally and anatomically connected to the medial prefrontal, retrosplenial, midcingulate and hippocampus, as well as motor cortices, CG has been implicated in retrieving appropriate information when needed to select and control appropriate behavior.

View Article and Find Full Text PDF

Recent research suggests that the cognitive monitoring system of control could be using negative affective cues intrinsic to changes in information processing to initiate top-down regulatory mechanisms. Here, we propose that positive feelings of ease-of-processing could be picked up by the monitoring system as a cue indicating that control is not necessary, leading to maladaptive control adjustments. We simultaneously target control adjustments driven by task context and on a trial-by-trial level, macro-, and micro-adjustments.

View Article and Find Full Text PDF

Conflict and perceptual disfluency have been shown to lead to adaptive, sequential, control adjustments. Here, we propose that these effects can be additive, suggesting their integration into a general feeling of disfluent information processing. This hypothesis was tested using an interference task that dynamically mixed trials varying in legibility and/or congruence.

View Article and Find Full Text PDF

The hippocampal region has long been considered critical for memory of time, and recent evidence shows that network operations and single-unit activity in the hippocampus and medial entorhinal cortex (MEC) correlate with elapsed time. However, whether MEC activity is necessary for timing remains largely unknown. Here we expressed DREADDs (designer receptors exclusively activated by designer drugs) under the CaMKIIa promoter to preferentially target MEC excitatory neurons for chemogenetic silencing, while freely moving male rats reproduced a memorized time interval by waiting inside a region of interest.

View Article and Find Full Text PDF

Stereotaxic access to brain areas underneath the superior sagittal sinus (SSS) is notoriously challenging. As a major drainage vessel, covering the whole extension of the sagittal fissure, the SSS impedes direct bilateral access to underlying regions for recording and stimulation probes, drug-delivery cannulas, and injection devices. We now describe a new method for transection and retraction of the SSS in rats, that allows the accurate placement of microinjection devices, or chronic electrode probes, while avoiding hemorrhage and the ensuing deleterious consequences for local structures, animal health, and behavior.

View Article and Find Full Text PDF

Memory-guided decisions depend on complex interactions between the hippocampus (HIPP) and medial mesocortical (MMC) regions, including the anterior cingulate (CG) and retrosplenial (RSC). The functional circuitry underlying these interactions is unclear. Using anatomy, electrophysiology, and optogenetics, we show that such circuitry is characterized by a functional-anatomical gradient.

View Article and Find Full Text PDF

Independently adjustable multielectrode arrays are routinely used to interrogate neuronal circuit function, enabling chronic monitoring of neuronal ensembles in freely behaving animals at a single-cell, single spike resolution. Despite the importance of this approach, its widespread use is limited by highly specialized design and fabrication methods. To address this, we have developed a Scalable, Lightweight, Integrated and Quick-to-assemble multielectrode array platform.

View Article and Find Full Text PDF

Behavioral changes in response to reward require monitoring past behavior relative to present outcomes. This is thought to involve a fine coordination between the hippocampus (HIPP), which stores and replays memories of past events, and cortical regions such as cingulate cortex, responsible for behavioral planning. Sharp-wave ripple (SWR)-mediated memory replay in the HIPP of awake rodents contributes to learning, but cortical responses to hippocampal SWR during wakefulness are not known.

View Article and Find Full Text PDF

Coupled oscillations are hypothesized to organize the processing of information across distributed brain circuits. This idea is supported by recent evidence, and newly developed techniques promise to put such theoretical framework to mechanistic testing. We review evidence suggesting that individual oscillatory cycles constitute a functional unit that organizes activity in neural networks, and that oscillatory phase (defined as the fraction of the wave cycle that has elapsed relative to the start of the cycle) is a key oscillatory parameter to implement the functions of oscillations in limbic networks.

View Article and Find Full Text PDF

Interactions between cortex and hippocampus are believed to play a role in the acquisition and maintenance of memories. Distinct types of coordinated oscillatory activity, namely at theta frequency, are hypothesized to regulate information processing in these structures. We investigated how information processing in cingulate cortex and hippocampus relates to cingulate-hippocampus coordination in a behavioral task in which rats choose from four possible trajectories according to a sequence.

View Article and Find Full Text PDF

A dialogue between the hippocampus and the neocortex is thought to underlie the formation, consolidation and retrieval of episodic memories, although the nature of this cortico-hippocampal communication is poorly understood. Using selective electrolytic lesions in rats, here we examined the role of the direct entorhinal projection (temporoammonic, TA) to the hippocampal area CA1 in short-term (24 hours) and long-term (four weeks) spatial memory in the Morris water maze. When short-term memory was examined, both sham- and TA-lesioned animals showed a significant preference for the target quadrant.

View Article and Find Full Text PDF

The hippocampus and the nearby medial temporal lobe structures are required for the formation, consolidation, and retrieval of episodic memories. Sensory information enters the hippocampus via two inputs from entorhinal cortex (EC): One input (perforant path) makes synapses on the dendrites of dentate granule cells as the first set of synapses in the trisynaptic circuit, the other (temporoammonic; TA) makes synapses on the distal dendrites of CA1 neurons. Here we demonstrate that TA-CA1 synapses undergo both early- and late-phase long-term potentiation (LTP) in rat hippocampal slices.

View Article and Find Full Text PDF

The hippocampus is necessary for the acquisition and retrieval of declarative memories. The best-characterized sensory input to the hippocampus is the perforant path projection from layer II of entorhinal cortex (EC) to the dentate gyrus. Signals are then processed sequentially in the hippocampal CA fields before returning to the cortex via CA1 pyramidal neuron spikes.

View Article and Find Full Text PDF