Publications by authors named "Miguel R Carro-Temboury"

Lanthanide(III) ions bind to the glycocalyx of Chinese Hamster Ovary (CHO) cells and give rise to a unique luminescent fingerprint. Following direct excitation of terbium(III) and europium(III) ions in the visible part of the spectrum, we are able to collect emission spectra pixel-by-pixel in images of CHO cells. Following data analysis that removes the background signal, the fine structure of the europium(III) luminescence indicate that the lanthanide(III) ions are bound to a single structure of the CHO cell glycocalyx.

View Article and Find Full Text PDF

In this communication, we investigate optically activated delayed fluorescence (OADF) from DNA-stabilized silver nanoclusters (DNA-AgNCs) at the single molecule level, and we probe the heterogeneity in the primary fluorescence (PF) intensity, NIR induced secondary fluorescence (SF) intensity and SF/PF ratio. Our experiments reveal a heterogeneous distribution in the SF/PF ratio, indicating that engineering of DNA-AgNCs towards a high SF/PF ratio and high OADF signal for background-free imaging might be possible.

View Article and Find Full Text PDF

Measurements on biological samples are often hampered by auto-fluorescence from inherent compounds in tissue or cells, limiting the achievable contrast. Both the signal of interest and the auto-fluorescence are usually detected on the Stokes side of the excitation laser. In this communication, we present two new microscopy modalities, based on the emission of a red-emitting DNA-stabilized silver nanocluster (DNA-AgNC).

View Article and Find Full Text PDF

In this paper we present a new near-IR emitting silver nanocluster (NIR-DNA-AgNC) with an unusually large Stokes shift between absorption and emission maximum (211 nm or 5600 cm). We studied the effect of viscosity and temperature on the steady state and time-resolved emission. The time-resolved results on NIR-DNA-AgNC show that the relaxation dynamics slow down significantly with increasing viscosity of the solvent.

View Article and Find Full Text PDF

Secure data encryption relies heavily on one-way functions, and copy protection relies on features that are difficult to reproduce. We present an optical authentication system based on lanthanide luminescence from physical one-way functions or physical unclonable functions (PUFs). They cannot be reproduced and thus enable unbreakable encryption.

View Article and Find Full Text PDF

The popularity of fluorescence microscopy arises from the inherent mode of action, where the fluorescence emission from probes is used to visualize selected features on a presumed dark background. However, the background is rarely truly dark, and image processing and analysis is needed to enhance the fluorescent signal that is ascribed to the selected feature. The image acquisition is facilitated by using considerable illumination, bright probes at a relatively high concentration in order to make the fluorescent signal significantly more intense than the background signal.

View Article and Find Full Text PDF

Detailed imaging of biological structures, often smaller than the diffraction limit, is possible in fluorescence microscopy due to the molecular size and photophysical properties of fluorescent probes. Advances in hardware and multiple providers of high-end bioimaging makes comparing images between studies and between research groups very difficult. Therefore, we suggest a model system to benchmark instrumentation, methods and staining procedures.

View Article and Find Full Text PDF

The nanosecond excited state temporal and spectral relaxation of a purified, red-emitting DNA-templated silver nanocluster (DNA-AgNC) was characterized as a function of temperature. The findings are explained by introducing a phenomenological electronic structure diagram. The reproducibility and cyclability of the average decay time opens up the possibility of using DNA-AgNCs for decay time-based nanothermometry.

View Article and Find Full Text PDF

A single-stranded DNA-based (ssDNA) dyad was constructed comprising 15 silver atoms stabilized by a ssDNA scaffold (DNA-AgNC) and an Alexa 546 fluorophore bound to the 5' end. The Alexa 546 was chosen to function as a Förster resonance energy transfer (FRET) donor for the AgNC. Time-correlated single photon counting (TCSPC) experiments allowed unraveling the excited-state relaxation processes of the purified DNA-AgNC-only system.

View Article and Find Full Text PDF

DNA-templated silver nanoclusters of a few tens of atoms or less have come into prominence over the last several years due to very strong absorption and efficient emission. Applications in microscopy and sensing have already been realized, however little is known about the excited-state structure and dynamics in these clusters. Here we report on a multidimensional spectroscopy investigation of the energy-level structure and the early-time relaxation cascade, which eventually results in the population of an emitting state.

View Article and Find Full Text PDF

Using single molecule polarization measurements, we investigate the excitation and emission polarization characteristics of DNA stabilized silver nanoclusters (C24-AgNCs). Although small changes in the polarization generally accompany changes to the emission spectrum, the emission and excitation transition dipoles tend to be steady over time and aligned in a similar direction, when immobilized in PVA. The emission transition dipole patterns, observed for C24-AgNCs in defocused wide field imaging, match that of a single emitter.

View Article and Find Full Text PDF

DNA-stabilized silver nanoclusters (DNA-AgNCs) are promising fluorophores whose photophysical properties and synthesis procedures have received increased attention in the literature. However, depending on the preparation conditions and the DNA sequence, the DNA-AgNC samples can host a range of different emitters, which can influence the reproducibility of the optical response and the evolution over time of the populations of these emitters. We have developed a simple method to characterize the spectral heterogeneity and time evolution of these emissive species at any given point in time after preparation, by plotting the average decay time as a function of emission wavelength.

View Article and Find Full Text PDF