Publications by authors named "Miguel Prado"

Loss of proteostasis is well documented during physiological aging and depends on the progressive decline in the activity of two major degradative mechanisms: the ubiquitin-proteasome system (UPS) and the autophagy-lysosomal pathway. This decline in proteostasis is exacerbated in age-associated neurodegenerative diseases, such as Parkinson's Disease (PD). In PD, patients develop an accumulation of aggregated proteins and dysfunctional mitochondria, which leads to ROS production, neuroinflammation and neurodegeneration.

View Article and Find Full Text PDF

Aging is a prominent risk factor for Alzheimer's disease (AD), but the cellular mechanisms underlying neuronal phenotypes remain elusive. Both accumulation of amyloid plaques and neurofibrillary tangles in the brain and age-linked organelle deficits are proposed as causes of AD phenotypes but the relationship between these events is unclear. Here, we address this question using a transdifferentiated neuron (tNeuron) model directly from human dermal fibroblasts.

View Article and Find Full Text PDF
Article Synopsis
  • Phosphoinositide-3-kinase-γ (PI3Kγ) is shown to play a critical role in both immune response and cancer cell behavior, particularly in acute leukemias.
  • A specific subset of acute leukemia cells, linked to innate inflammatory signaling, exhibits a dependency on the PI3Kγ complex, which interacts with other proteins like PIK3R5 and PAK1.
  • The selective PI3Kγ inhibitor eganelisib, especially when combined with cytarabine, has demonstrated effectiveness in fighting leukaemias and may be a promising treatment strategy for patients with specific genetic profiles.
View Article and Find Full Text PDF

Purpose: Imbalances in protein homeostasis affect human brain development, with the ubiquitin-proteasome system (UPS) and autophagy playing crucial roles in neurodevelopmental disorders (NDD). This study explores the impact of biallelic USP14 variants on neurodevelopment, focusing on its role as a key hub connecting UPS and autophagy.

Methods: Here, we identified biallelic USP14 variants in 4 individuals from 3 unrelated families: 1 fetus, a newborn with a syndromic NDD and 2 siblings affected by a progressive neurological disease.

View Article and Find Full Text PDF
Article Synopsis
  • Phosphoinositide 3-kinase gamma (PI3Kγ) plays a dual role in cancer, aiding both tumor-associated macrophages and certain leukemia cells, revealing its potential as a therapeutic target.
  • Recent research highlights a specific dependency on PI3Kγ in high-risk acute leukemia subtypes, activating inflammatory signaling and showing involvement of PAK1, which operates independently of the typical Akt pathway.
  • The selective PI3Kγ inhibitor eganelisib, especially in combination with cytarabine, shows promise in enhancing treatment efficacy and prolonging survival in leukemia models, suggesting a new pathway for patient evaluation.
View Article and Find Full Text PDF

The role of proteostasis and organelle homeostasis dysfunction in human aging and Alzheimer's disease (AD) remains unclear. Analyzing proteome-wide changes in human donor fibroblasts and their corresponding transdifferentiated neurons (tNeurons), we find aging and AD synergistically impair multiple proteostasis pathways, most notably lysosomal quality control (LQC). In particular, we show that ESCRT-mediated lysosomal repair defects are associated with both sporadic and PSEN1 familial AD.

View Article and Find Full Text PDF

A new optical method for assigning glass viscosity values in the softening temperature range is presented. In this method, an irregular particle, a few millimeters in size, laying on an alumina plate, is heated up to temperature , and then remains at this temperature. should be within the softening temperature range of the glass.

View Article and Find Full Text PDF

Myeloproliferative neoplasms (MPNs) are characterized by the activated JAK2/STAT pathway. Pleckstrin-2 (Plek2) is a downstream target of the JAK2/STAT5 pathway and is overexpressed in patients with MPNs. We previously revealed that Plek2 plays critical roles in the pathogenesis of JAK2-mutated MPNs.

View Article and Find Full Text PDF

Haploinsufficiency of progranulin (PGRN) causes frontotemporal dementia (FTD), a devastating neurodegenerative disease with no effective treatment. PGRN is required for efficient proteostasis, as loss of neuronal PGRN results in dysfunctional lysosomes and impaired clearance and cytoplasmic aggregation of TDP-43, a protein involved in neurodegeneration in FTD. These and other events lead to neurodegeneration and neuroinflammation.

View Article and Find Full Text PDF

RNA alternative splicing (AS) expands the regulatory potential of eukaryotic genomes. The mechanisms regulating liver-specific AS profiles and their contribution to liver function are poorly understood. Here, we identify a key role for the splicing factor RNA-binding Fox protein 2 (RBFOX2) in maintaining cholesterol homeostasis in a lipogenic environment in the liver.

View Article and Find Full Text PDF

Sarcomas are mesenchymal cancers which often show an aggressive behavior and patient survival largely depends on an early detection. In last years, much attention has been given to the fact that cancer patients release specific odorous volatile organic compounds (VOCs) that can be efficiently detected by properly trained sniffer dogs. Here, we have evaluated for the first time the ability of sniffer dogs (n = 2) to detect osteosarcoma cell cultures and patient samples.

View Article and Find Full Text PDF

UBQLN2 mutations cause amyotrophic lateral sclerosis (ALS) with frontotemporal dementia (FTD), but the pathogenic mechanisms by which they cause disease remain unclear. Proteomic profiling identified 'mitochondrial proteins' as comprising the largest category of protein changes in the spinal cord (SC) of the P497S UBQLN2 mouse model of ALS/FTD. Immunoblots confirmed P497S animals have global changes in proteins predictive of a severe decline in mitochondrial health, including oxidative phosphorylation (OXPHOS), mitochondrial protein import and network dynamics.

View Article and Find Full Text PDF

The proteasome mediates most selective protein degradation. Proteolysis occurs within the 20S core particle (CP), a barrel-shaped chamber with an αββα configuration. CP biogenesis proceeds through an ordered multistep pathway requiring five chaperones, Pba1-4 and Ump1.

View Article and Find Full Text PDF

Background: Maternal iron deficiency (ID) is associated with poor pregnancy and fetal outcomes. The effect is thought to be mediated by the placenta but there is no comprehensive assessment of placental responses to maternal ID. Additionally, whether the influence of maternal ID on the placenta differs by fetal sex is unknown.

View Article and Find Full Text PDF

Standard-sized autonomous vehicles have rapidly improved thanks to the breakthroughs of deep learning. However, scaling autonomous driving to mini-vehicles poses several challenges due to their limited on-board storage and computing capabilities. Moreover, autonomous systems lack robustness when deployed in dynamic environments where the underlying distribution is different from the distribution learned during training.

View Article and Find Full Text PDF

In this work we present a new type of scaffold obtained by solid-state reaction, simultaneous sintering of a mixture of precursor oxides, carbonates, and organic substances, the latter used for pore generation. Having variable local composition, exhibits excellent overall physicochemical and bioactivity response. Open porosity is about 50%-60% and its permeability 10  m .

View Article and Find Full Text PDF
Article Synopsis
  • Familial neurodegenerative diseases often involve mutations that affect either protein functions or the mechanisms that degrade these proteins, with UBQLN2 being a key factor linked to ALS and frontotemporal dementia.
  • A study using advanced proteomics explored UBQLN2's role and discovered its influence on various physiological pathways, particularly serotonergic signaling, as well as an increase in certain proteasome subunits which might indicate a compensatory mechanism.
  • The research identified specific proteins, including TRIM32 and PEG10, whose levels are linked to UBQLN2 functionality and revealed that while UBQLN2 promotes the degradation of many proteins, it protects the Gag-like protein CXX1B from degradation.
View Article and Find Full Text PDF

The final stages of mammalian erythropoiesis involve enucleation, membrane and proteome remodeling, and organelle clearance. Concomitantly, the erythroid membrane skeleton establishes a unique pseudohexagonal spectrin meshwork that is connected to the membrane through junctional complexes. The mechanism and signaling pathways involved in the coordination of these processes are unclear.

View Article and Find Full Text PDF

Mutations in cause amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), and other neurodegenerations. However, the mechanism by which the UBQLN2 mutations cause disease remains unclear. Alterations in proteins involved in autophagy are prominent in neuronal tissue of human ALS patients and in a transgenic P497S UBQLN2 mouse model of ALS/FTD, suggesting a pathogenic link.

View Article and Find Full Text PDF

Chromatin organization is a highly orchestrated process that influences gene expression, in part by modulating access of regulatory factors to DNA and nucleosomes. Here, we report that the chromatin accessibility regulator HMGN1, a target of recurrent DNA copy gains in leukemia, controls myeloid differentiation. HMGN1 amplification is associated with increased accessibility, expression, and histone H3K27 acetylation of loci important for hematopoietic stem cells (HSCs) and leukemia, such as HoxA cluster genes.

View Article and Find Full Text PDF

The yeast stress-activated protein kinase Hog1 is best known for its role in mediating the response to osmotic stress, but it is also activated by various mechanistically distinct environmental stressors, including heat shock, endoplasmic reticulum stress, and arsenic. In the osmotic stress response, the signal is sensed upstream and relayed to Hog1 through a kinase cascade. Here, we identified a mode of Hog1 function whereby Hog1 senses arsenic through a direct physical interaction that requires three conserved cysteine residues located adjacent to the catalytic loop.

View Article and Find Full Text PDF

The proteasome, the most complex protease known, degrades proteins that have been conjugated to ubiquitin. It faces the unique challenge of acting enzymatically on hundreds and perhaps thousands of structurally diverse substrates, mechanically unfolding them from their native state and translocating them vectorially from one specialized compartment of the enzyme to another. Moreover, substrates are modified by ubiquitin in myriad configurations of chains.

View Article and Find Full Text PDF

Primary cilia are hair-like organelles that play crucial roles in vertebrate development, organogenesis and when dysfunctional result in pleiotropic human genetic disorders called ciliopathies, characterized by overlapping phenotypes, such as renal and hepatic cysts, skeletal defects, retinal degeneration and central nervous system malformations. Primary cilia act as communication hubs to transfer extracellular signals into intracellular responses and are essential for Hedgehog (Hh) signal transduction in mammals. Despite the renewed interest in this ancient organelle of growing biomedical importance, the molecular mechanisms that trigger cilia formation, extension and ciliary signal transduction are still not fully understood.

View Article and Find Full Text PDF

Genomic studies have recently identified as a new driver gene in aggressive and chemorefractory cases of chronic lymphocytic leukemia (CLL). encodes a ribosomal protein whose conserved C-terminal domain extends into the decoding center of the ribosome. We demonstrate that mutations in highly conserved residues of this domain affect protein stability, by increasing its ubiquitin-mediated degradation, and cell-proliferation rates.

View Article and Find Full Text PDF

Zika virus infection during pregnancy can cause serious birth defects, including microcephaly and brain abnormalities (1). Population-based birth defects surveillance systems are critical to monitor all infants and fetuses with birth defects potentially related to Zika virus infection, regardless of known exposure or laboratory evidence of Zika virus infection during pregnancy. CDC analyzed data from 15 U.

View Article and Find Full Text PDF