IEEE J Sel Top Appl Earth Obs Remote Sens
January 2023
Hyperspectral satellite imagery provides highly-resolved spectral information for large areas and can provide vital information. However, only a few imaging spectrometer missions are currently in operation. Aiming to generate synthetic satellite-based hyperspectral imagery potentially covering any region, we explored the possibility of applying statistical learning, i.
View Article and Find Full Text PDFAccurate plant-type (PT) detection forms an important basis for sustainable land management maintaining biodiversity and ecosystem services. In this sense, Sentinel-2 satellite images of the Copernicus program offer spatial, spectral, temporal, and radiometric characteristics with great potential for mapping and monitoring PTs. In addition, the selection of a best-performing algorithm needs to be considered for obtaining PT classification as accurate as possible.
View Article and Find Full Text PDFThe retrieval of sun-induced fluorescence (SIF) from hyperspectral radiance data grew to maturity with research activities around the FLuorescence EXplorer satellite mission FLEX, yet full-spectrum estimation methods such as the spectral fitting method (SFM) are computationally expensive. To bypass this computational load, this work aims to approximate the SFM-based SIF retrieval by means of statistical learning, i.e.
View Article and Find Full Text PDFThanks to the emergence of cloud-computing platforms and the ability of machine learning methods to solve prediction problems efficiently, this work presents a workflow to automate spatiotemporal mapping of essential vegetation traits from Sentinel-3 (S3) imagery. The traits included leaf chlorophyll content (LCC), leaf area index (LAI), fraction of absorbed photosynthetically active radiation (FAPAR), and fractional vegetation cover (FVC), being fundamental for assessing photosynthetic activity on Earth. The workflow involved Gaussian process regression (GPR) algorithms trained on top-of-atmosphere (TOA) radiance simulations generated by the coupled canopy radiative transfer model (RTM) SCOPE and the atmospheric RTM 6SV.
View Article and Find Full Text PDFISPRS J Photogramm Remote Sens
August 2021
Satellite imaging spectroscopy for terrestrial applications is reaching maturity with recently launched and upcoming science-driven missions, e.g. PRecursore IperSpettrale della Missione Applicativa (PRISMA) and Environmental Mapping and Analysis Program (EnMAP), respectively.
View Article and Find Full Text PDF