Publications by authors named "Miguel Molina-Romero"

Diffusion tensor imaging (DTI), and fractional-anisotropy (FA) maps in particular, have shown promise in predicting areas of tumor recurrence in glioblastoma. However, analysis of peritumoral edema, where most recurrences occur, is impeded by free-water contamination. In this study, we evaluated the benefits of a novel, deep-learning-based approach for the free-water correction (FWC) of DTI data for prediction of later recurrence.

View Article and Find Full Text PDF

Purpose: Glioblastoma is routinely treated by concomitant radiochemotherapy. Current target definition guidelines use anatomic MRI (magnetic resonance imaging) scans, taking into account contrast enhancement and the rather unspecific hyperintensity on the fluid-attenuated inversion recovery (FLAIR) sequence.

Methods And Materials: We applied deep learning based free water correction of diffusion tensor imaging (DTI) scans to estimate the infiltrative gross tumor volume (iGTV) inside of the FLAIR hyperintense region.

View Article and Find Full Text PDF

Magnetic resonance imaging (MRI) has evolved into an outstandingly versatile diagnostic modality, as it has the ability to non-invasively produce detailed information on a tissue's structure and function. Complementary data is normally obtained in separate measurements, either as contrast-weighted images, which are fast and simple to acquire, or as quantitative parametric maps, which offer an absolute quantification of underlying biophysical effects, such as relaxation times or flow. Here, we demonstrate how to acquire and reconstruct data in a transient-state with a dual purpose: 1 - to generate contrast-weighted images that can be adjusted to emphasise clinically relevant image biomarkers; exemplified with signal modulation according to flow to obtain angiography information, and 2 - to simultaneously infer multiple quantitative parameters with a single, highly accelerated acquisition.

View Article and Find Full Text PDF

Purpose: The compartmental nature of brain tissue microstructure is typically studied by diffusion MRI, MR relaxometry or their correlation. Diffusion MRI relies on signal representations or biophysical models, while MR relaxometry and correlation studies are based on regularized inverse Laplace transforms (ILTs). Here we introduce a general framework for characterizing microstructure that does not depend on diffusion modeling and replaces ill-posed ILTs with blind source separation (BSS).

View Article and Find Full Text PDF