A symmetric Poisson-Boltzmann theory is used to analyse the structure of a primitive model colloidal system which contains either 4 or 6 components. The approach symmetrizes the pair distribution function () between two asymmetric charged species with respect to an interchange of the indices. Good agreement is found with molecular dynamics simulation structural properties when the exclusion volume term is modelled by the Percus-Yevick uncharged hard sphere radial distribution function.
View Article and Find Full Text PDFEvaluation of the proton-coupled electron transfer thermodynamics of immobilized hemin is challenging due to the disparity of its electrochemical titration curves reported in the literature. Deviations from the one-electron, one-proton transfer at circumneutral pHs have been commonly ascribed to either the formation of dimeric species or the ionization of a second iron-bound water molecule. Herein, however, we report on non-idealities in the more acidic region, whose onset and extent vary with the nature and concentration of the commonly used phosphate and acetate buffers.
View Article and Find Full Text PDFThis paper deals with the study of damage produced during freeze-thaw (F-T) cycles using two non-destructive measurement approaches-the first approach devoted to continuous monitoring using embedded sensors during the cycles, and the second one, performing ultrasonic imaging before and after the cycles. Both methodologies have been tested in two different types of concrete specimens, with and without air-entraining agents. Using the first measurement approach, the size and distribution of pores were estimated using a thermoporometrical model and continuous measurements of temperature and ultrasonic velocity along cycles.
View Article and Find Full Text PDFWe present an implementation of the numerical modeling of elastic waves propagation, in 2D anisotropic materials, using the new parallel computing devices (PCDs). Our study is aimed both to model laboratory experiments and explore the capabilities of the emerging PCDs by discussing performance issues. In the experiments a sample plate of an anisotropic material placed inside a water tank is rotated and, for every angle of rotation it is subjected to an ultrasonic wave (produced by a large source transducer) that propagates in the water and through the material producing some reflection and transmission signals that are recording by a "point-like" receiver.
View Article and Find Full Text PDFDirect determination of the adsorption free energy for extremely low surface coverages (Henry limit) requires the use of a technique that must be highly sensitive to both the amount and the energetics of adsorbed molecules. Herein, we demonstrate that diffusional surface voltammetry (DSV), which embodies film and stripping voltammetries as two limiting cases, can be used to achieve this goal for electroactive adsorbates. To this end, a general analytical expression for the surface voltammetric peak potential of DSV is derived, which covers the full range of scan rates, bulk concentrations, and adsorptivity of the freely diffusing form of the redox couple, so that the surface redox conversion can be either equilibrated with or transport-isolated from the solution bulk.
View Article and Find Full Text PDFThe influence of a series of aliphatic alcohols on the reorientation of alkylthiols during their self-assembly has been studied by cathodic stripping voltammetry. The presence of an aliphatic alcohol in the deposition solution is shown to lower the critical reorientational surface concentration of alkylthiols, making it less sensitive to molecular size. The use of a series of alcohols differing in their molecular length or branching reveals that the onset of thiol reorientation correlates well with the extent of alcohol adsorption.
View Article and Find Full Text PDFReorientation of thiols during their 2D self-assembly is well established; however, little is known about its energetics and the factors that control its onset. We have developed a new strategy to determine the critical reorientational surface concentration (crsc) of thiols at the substrate/solution interface, which makes use of a cathodic stripping protocol. Its application to distinct homologous series of alkylthiols shows that the magnitude of the crsc and its variation with the molecular size is strongly dependent on the nature of the terminal group.
View Article and Find Full Text PDF