Complete congenital stationary night blindness (cCSNB) due to mutations in , , , , or leucine-rich repeat immunoglobulin-like transmembrane domain 3 () is an incurable inherited retinal disorder characterized by an ON-bipolar cell (ON-BC) defect. Since the disease is non-degenerative and stable, treatment could theoretically be administrated at any time in life, making it a promising target for gene therapy. Until now, adeno-associated virus (AAV)-mediated therapies lead to significant functional improvements only in newborn cCSNB mice.
View Article and Find Full Text PDFPurpose: Complete congenital stationary night blindness (cCSNB) is an incurable inherited retinal disorder characterized by an ON-bipolar cell (ON-BC) defect. GRM6 mutations are the third most prevalent cause of cCSNB. The Grm6-/- mouse model mimics the human phenotype, showing no b-wave in the electroretinogram (ERG) and a loss of mGluR6 and other proteins of the same cascade at the outer plexiform layer (OPL).
View Article and Find Full Text PDFBased on direct sucrose conversion, the bacterium Burkholderia sacchari is an excellent producer of the microbial homopolyester poly(3-hydroxybutyrate) (PHB). Restrictions of the strain's wild type in metabolizing structurally related 3-hydroxyvalerate (3HV) precursors towards 3HV-containing polyhydroxyalkanoate (PHA) copolyester calls for alternatives. We demonstrate the highly productive biosynthesis of PHA copolyesters consisting of 3-hydroxybuytrate (3HB) and 4-hydroxybutyrate (4HB) monomers.
View Article and Find Full Text PDFSustainable production of microbial polyhydroxyalkanoate (PHA) biopolyesters on a larger scale has to consider the "four magic e": economic, ethical, environmental, and engineering aspects. Moreover, sustainability of PHA production can be quantified by modern tools of Life Cycle Assessment. Economic issues are to a large extent affected by the applied production mode, downstream processing, and, most of all, by the selection of carbon-rich raw materials as feedstocks for PHA production by safe and naturally occurring wild type microorganisms.
View Article and Find Full Text PDFLiquefied wood (LW) prepared in a microwave process was applied as a novel; inexpensive precursor feedstock for incorporation of ()-3-hydroxyvalerate (3HV) into polyhydroxyalkanoate (PHA) biopolyesters in order to improve the biopolyester's material quality; was applied as microbial production strain. For proof of concept, pre-experiments were carried out on a shake flask scale using different mixtures of glucose and LW as carbon source. The results indicate that LW definitely acts as a 3HV precursor, but, at the same time, displays toxic effects on at concentrations exceeding 10 g/L.
View Article and Find Full Text PDF