Membrane processes are a reality in a wide range of industrial applications, and efforts to continuously enhance their performance are being pursued. The major drawbacks encountered are related to the minimization of polarization concentration, fouling, and biofouling formation. In this study, silver nanoparticles were added to the casting solutions of cellulose acetate membranes in order to obtain new hybrid membranes that present characteristics inherent to the silver nanoparticles, namely antibacterial behavior that leads to biofouling reduction.
View Article and Find Full Text PDFMembranes (Basel)
August 2023
The present work investigates nanofiltration (NF) and ultrafiltration (UF) for the removal of three widely used pharmaceutically active compounds (PhACs), namely atenolol, sulfamethoxazole, and rosuvastatin. Four membranes, two polyamide NF membranes (NF90 and NF270) and two polyethersulfone UF membranes (XT and ST), were evaluated in terms of productivity (permeate flux) and selectivity (rejection of PhACs) at pressures from 2 to 8 bar. Although the UF membranes have a much higher molecular weight cut-off (1000 and 10,000 Da), when compared to the molecular weight of the PhACs (253-482 Da), moderate rejections were observed.
View Article and Find Full Text PDFThe antibacterial properties of cellulose acetate/silver nanoparticles (AgNP) ultrafiltration membranes were correlated with their integral asymmetric porous structures, emphasizing the distinct features of each side of the membranes, that is, the active and porous layers surfaces. Composite membranes were prepared from casting solutions incorporating polyvinylpyrrolidone-covered AgNP using the phase inversion technique. The variation of the ratio acetone/formamide and the AgNP content resulted in a wide range of asymmetric porous structures with different hydraulic permeabilities.
View Article and Find Full Text PDFWater Res
February 2019
The present work addresses the synthesis of nanofiltration composite membranes with bactericide properties. The cellulose acetate based membranes with polyvinylpyrrolidone coated silver nanoparticles, silver ion-exchanged β-zeolite and β-zeolite are casted by the phase inversion technique and subjected to an annealing post-treatment. They are characterized in terms of the nanofiltration permeation performance and antibacterial properties.
View Article and Find Full Text PDFWastewater from cork processing industry present high levels of organic and phenolic compounds, such as tannins, with a low biodegradability and a significant toxicity. These compounds are not readily removed by conventional municipal wastewater treatment, which is largely based on primary sedimentation followed by biological treatment. The purpose of this work is to study the biodegradability of different cork wastewater fractions, obtained through membrane separation, in order to assess its potential for biological treatment and having in view its valorisation through tannins recovery, which could be applied in other industries.
View Article and Find Full Text PDFSecond cheese whey (SCW) is a by-product of cheese and curd cheese production that is usually not recovered and therefore substantially contributes to the negative environmental impact of the cheese manufacture plants. Membrane technology, namely nanofiltration (NF), is used in this work for the recovery of SCW organic nutrients, resulting from "Serpa" cheese and curd production. The SCW is processed by NF to recover a rich lactose fraction in the concentrate and a process water with a high salt content in the permeate.
View Article and Find Full Text PDF