Publications by authors named "Miguel Martinez-Canales"

We show that the hydrogen in metal superhydride compounds can adopt two distinct states-atomic and molecular. At low pressures, the maximum number of atomic hydrogens is typically equal to the valency of the cation; additional hydrogens pair to form molecules with electronic states far below the Fermi energy causing low-symmetry structures with large unit cells. At high pressures, molecules become unstable, and all hydrogens become atomic.

View Article and Find Full Text PDF

Through a series of high-pressure x-ray diffraction experiments combined with in situ laser heating, we explore the pressure-temperature phase diagram of germanium (Ge) at pressures up to 110 GPa and temperatures exceeding 3000 K. In the pressure range of 64-90 GPa, we observe orthorhombic Ge-IV transforming above 1500 K to a previously unobserved high-temperature phase, which we denote as Ge-VIII. This high-temperature phase is characterized by a tetragonal crystal structure, space group I4/mmm.

View Article and Find Full Text PDF

By combining pressures up to 50 GPa and temperatures of 1200 K, we synthesize the novel barium hydride, BaH, stable down to 27 GPa. We use Raman spectroscopy, X-ray diffraction, and first-principles calculations to determine that this compound adopts a highly symmetric structure with an unusual 5:1 hydrogen-to-barium ratio. This singular stoichiometry corresponds to the well-defined type-I clathrate geometry.

View Article and Find Full Text PDF

Nitrogen exhibits an exceptional polymorphism under extreme conditions, making it unique amongst the elemental diatomics and a valuable testing system for experiment-theory comparison. Despite attracting considerable attention, the structures of many high-pressure nitrogen phases still require unambiguous determination. Here, we report the structure of the elusive high-pressure high-temperature polymorph ι-N at 56 GPa and ambient temperature, determined by single crystal X-ray diffraction, and investigate its properties using ab initio simulations.

View Article and Find Full Text PDF

We investigate the binary phase diagram of helium and iron using first-principles calculations. We find that helium, which is a noble gas and inert at ambient conditions, forms stable crystalline compounds with iron at terapascal pressures. A FeHe compound becomes stable above 4 TPa, and a FeHe_{2} compound above 12 TPa.

View Article and Find Full Text PDF

The crystal structure of elements at zero pressure and temperature is the most fundamental information in condensed matter physics. For decades it has been believed that lithium, the simplest metallic element, has a complicated ground-state crystal structure. Using synchrotron x-ray diffraction in diamond anvil cells and multiscale simulations with density functional theory and molecular dynamics, we show that the previously accepted martensitic ground state is metastable.

View Article and Find Full Text PDF

The phase diagram and equation of state of dense nitrogen are of interest in understanding the fundamental physics and chemistry under extreme conditions, including planetary processes, and in discovering new materials. We predict several stable phases of nitrogen at multi-TPa pressures, including a P4/nbm structure consisting of partially charged N(2)(δ+) pairs and N(5)(δ-) tetrahedra, which is stable in the range 2.5-6.

View Article and Find Full Text PDF

Computational searches for stable and metastable structures of water ice and other H:O compositions at TPa pressures have led us to predict that H(2)O decomposes into H(2)O(2) and a hydrogen-rich phase at pressures of a little over 5 TPa. The hydrogen-rich phase is stable over a wide range of hydrogen contents, and it might play a role in the erosion of the icy component of the cores of gas giants as H(2)O comes into contact with hydrogen. Metallization of H(2)O is predicted at a higher pressure of just over 6 TPa, and therefore H(2)O does not have a thermodynamically stable low-temperature metallic form.

View Article and Find Full Text PDF

Phases of carbon are studied up to pressures of 1 petapascal (PPa) using first-principles density-functional-theory methods and a structure searching algorithm. Our extensive search over the potential energy surface supports the sequence of transitions diamond → BC8 → simple cubic under increasing pressure found in previous theoretical studies. At higher pressures we predict a soft-phonon driven transition to a simple hexagonal structure at 6.

View Article and Find Full Text PDF

Computational searches for structures of solid oxygen under high pressures in the multi-TPa range are carried out using density-functional-theory methods. We find that molecular oxygen persists to about 1.9 TPa at which it transforms into a semiconducting square-spiral-like polymeric structure (I4(1)/acd) with a band gap of ~3.

View Article and Find Full Text PDF

Following the suggestion that hydrogen-rich compounds, and, in particular, silane (SiH4), might be high-T_{c} superconductors at moderate pressures, very recent experiments have confirmed that silane metallises and even becomes superconducting at high pressure. In this article, we present a structural characterization of compressed silane obtained with an ab initio evolutionary algorithm for crystal structure prediction. Besides the earlier molecular and chainlike structures of P2_{1}/c and I4_{1}/a symmetries, respectively, we propose two novel structures with space groups Fdd2 and Pbcn, to be stable at 25-55 and 220-250 GPa, respectively.

View Article and Find Full Text PDF

High-pressure structures of germane (GeH4) are explored through ab initio evolutionary methodology to reveal a metallic monoclinic structure of C2/c (4 molecules/cell). The C2/c structure consists of layerlike motifs containing novel "H2" units. Enthalpy calculations suggest a remarkably wide decomposition (Ge+H2) pressure range of 0-196 GPa, above which C2/c structure is stable.

View Article and Find Full Text PDF