Publications by authors named "Miguel Marti"

The rising resistance of various pathogens and the demand for materials that prevent infections drive the need to develop broad-spectrum antimicrobial membranes capable of combating a range of microorganisms, thereby enhancing safety in biomedical and industrial applications. Herein, we introduce a simple and efficient technique to engineer membranes composed of polylactic acid (PLA) and polybutylene adipate terephthalate (PBAT) biopolymers and α-AgWO particles using an electrospinning technique. The corresponding structural, thermal, mechanical, and antimicrobial properties were characterized.

View Article and Find Full Text PDF
Article Synopsis
  • Chitosan films were created using an acetic acid solution, which composed 15.49% of the final mixture.
  • These films demonstrated compatibility with human skin cells (HaCaT) and exhibited strong antiviral properties, effectively inactivating up to 99.98% of certain enveloped viruses and 99.92% of non-enveloped viruses.
  • The study suggests that these biodegradable chitosan/acetic acid films could be valuable for medical uses where antiviral materials are needed.
View Article and Find Full Text PDF

The production of alcoholic and non-alcoholic rosé wines using Saccharomyces cerevisiae var. boulardii probiotic yeast is described in this study for the first time. Before and after fermentation and distillation, the volatile acidity, lactic, and malic acid levels were evaluated for S.

View Article and Find Full Text PDF

Introduction: Immune checkpoint inhibitors (ICI) are novel therapeutic strategies in cancer treatment, promoting anti-tumor response by boosting cytotoxic T lymphocytes. Despite their high effectiveness, they can trigger the activation of diverse autoimmune diseases in genetically predisposed individuals. New-onset autoimmune diabetes mellitus type 1 (T1D) is an extremely unusual side effect, described in less than 1% of patients.

View Article and Find Full Text PDF

Gold-ceria nanoparticles (Au/CeO) are known to have antioxidant properties. However, whether these nanoparticles can provide benefits in type 2 diabetes mellitus (T2D) remains unknown. This work aimed to study the effects of Au/CeO nanoparticles at different rates of gold purity (10, 4.

View Article and Find Full Text PDF

Introduction: The difficulty of the follicular unit excision (FUE) hair transplantation procedure is currently attributed to hair curliness and subsurface angulation. Patients possessing the curliest hair shafts are considered the most challenging. Consequently, patients with these features are often denied FUE.

View Article and Find Full Text PDF

COVID-19 pandemic and associated supply-chain disruptions emphasise the requirement for antimicrobial materials for on-demand manufacturing. Besides aerosol transmission, SARS-CoV-2 is also propagated through contact with virus-contaminated surfaces. As such, the development of effective biofunctional materials that can inactivate SARS-CoV-2 is critical for pandemic preparedness.

View Article and Find Full Text PDF
Article Synopsis
  • The COVID-19 pandemic has created a pressing need for new antimicrobial solutions to combat the SARS-CoV-2 virus and address the rising antibiotic resistance seen with Gram-positive bacteria contributing to severe pneumonia.
  • Researchers developed non-woven fabrics with antimicrobial coatings from cranberry extracts that can effectively inactivate SARS-CoV-2 and multidrug-resistant bacteria in a short time frame.
  • The study includes thorough testing of the materials' properties and confirms their non-toxicity, offering a promising avenue for creating safer, natural, and biodegradable infection prevention clothing in response to the ongoing pandemic and growing microbial resistance issues.
View Article and Find Full Text PDF

Infection prevention clothing is becoming an essential protective tool in the current pandemic, especially because now we know that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can easily infect humans in poorly ventilated indoor spaces. However, commercial infection prevention clothing is made of fabrics that are not capable of inactivating the virus. Therefore, viral infections of symptomatic and asymptomatic individuals wearing protective clothing such as masks can occur through aerosol transmission or by contact with the contaminated surfaces of the masks, which are suspected as an increasing source of highly infectious biological waste.

View Article and Find Full Text PDF

Transparent materials used for facial protection equipment provide protection against microbial infections caused by viruses and bacteria, including multidrug-resistant strains. However, transparent materials used for this type of application are made of materials that do not possess antimicrobial activity. They just avoid direct contact between the person and the biological agent.

View Article and Find Full Text PDF

Type 2 diabetes is a chronic disease widespread throughout the world, with significant human, social, and economic costs. Its multifactorial etiology leads to persistent hyperglycemia, impaired carbohydrate and fat metabolism, chronic inflammation, and defects in insulin secretion or insulin action, or both. Emerging evidence reveals that oxidative stress has a critical role in the development of type 2 diabetes.

View Article and Find Full Text PDF

Face masks have globally been accepted to be an effective protective tool to prevent bacterial and viral transmission, especially against indoor aerosol transmission. However, commercial face masks contain filters that are made of materials that are not capable of inactivating either SARS-CoV-2 or multidrug-resistant bacteria. Therefore, symptomatic and asymptomatic individuals can infect other people even if they wear them because some viable viral or bacterial loads can escape from the masks.

View Article and Find Full Text PDF

Due to the current global health problem of antibiotic resistant recently announced by the World Health Organization, there is an urgent necessity of looking for new alternative antibacterial materials able to treat and impede multidrug-resistant infections which are cost-effective and non-toxic for human beings. In this regard, carbon nanofibers (CNFs) possess currently much lower cost than other carbon nanomaterials, such as graphene oxide, and exhibit excellent chemical, mechanical and electric properties. Furthermore, here, the first report on the antibacterial activity of CNFs was demonstrated.

View Article and Find Full Text PDF

Alginate is considered an exceptional biomaterial due to its hydrophilicity, biocompatibility, biodegradability, nontoxicity and low-cost in comparison with other biopolymers. We have recently demonstrated that the incorporation of 1% graphene oxide (GO) into alginate films crosslinked with Ca2+ cations provides antibacterial activity against Staphylococcus aureus and methicillin-resistant Staphylococcus epidermidis, and no cytotoxicity for human keratinocyte HaCaT cells. However, many other reports in literature have shown controversial results about the toxicity of GO demanding further investigation.

View Article and Find Full Text PDF

The development of new advanced materials with enhanced properties is becoming more and more important in a wide range of bioengineering applications. Thus, many novel biomaterials are being designed to mimic specific environments required for biomedical applications such as tissue engineering and controlled drug delivery. The development of materials with improved properties for the immobilization of cells or enzymes is also a current research topic in bioprocess engineering.

View Article and Find Full Text PDF

Bacteria use two-component systems (TCSs) to sense and respond to environmental changes. The core genome of the major human pathogen Staphylococcus aureus encodes 16 TCSs, one of which (WalRK) is essential. Here we show that S.

View Article and Find Full Text PDF

The SaPIs are a cohesive subfamily of extremely common phage-inducible chromosomal islands (PICIs) that reside quiescently at specific att sites in the staphylococcal chromosome and are induced by helper phages to excise and replicate. They are usually packaged in small capsids composed of phage virion proteins, giving rise to very high transfer frequencies, which they enhance by interfering with helper phage reproduction. As the SaPIs represent a highly successful biological strategy, with many natural Staphylococcus aureus strains containing two or more, we assumed that similar elements would be widespread in the Gram-positive cocci.

View Article and Find Full Text PDF

Unlabelled: Our aim was to investigate the role played by endothelial nitric oxide (NO) during acute vascular response to hypoxia, as a modulator of both vascular tone (through guanylate cyclase (sGC) activation) and mitochondrial O2 consumption (through competitive inhibition of cytochrome-c-oxydase (CcO)). Organ bath experiments were performed and O2 consumption (Clark electrode) was determined in isolated aorta, mesenteric and pulmonary arteries of rats and eNOS-knockout mice. All pre-contracted vessels exhibited a triphasic hypoxic response consisting of an initial transient contraction (not observed in vessels from eNOS-knockout mice) followed by relaxation and subsequent sustained contraction.

View Article and Find Full Text PDF

Staphylococcus aureus pathogenicity islands (SaPIs) are a group of related 15-17 kb mobile genetic elements that commonly carry genes for superantigen toxins and other virulence factors. The key feature of their mobility is the induction of SaPI excision and replication by certain phages and their efficient encapsidation into specific small-headed phage-like infectious particles. Previous work demonstrated that chromosomal integration depends on the SaPI-encoded recombinase, Int.

View Article and Find Full Text PDF

In Staphylococcus aureus, biofilm formation can be associated with the production of surface-anchored proteins, including Bap, SasG, FnBPs or Spa. By mutational analysis, and using a model strain in which biofilm formation was Bap-dependent, we found that sigma(B) was essential for protein-dependent biofilm development. Non-polar mutations of sigma(B) in genetically unrelated S.

View Article and Find Full Text PDF

A process of phase variation is described that affects the expression of Bap (biofilm-associated protein) in Staphylococcus aureus. Upon subculture of the Bap-positive S. aureus strain V329 on Congo red agar, spontaneous smooth biofilm-negative colonies appeared at a low frequency (5 x 10(-4)).

View Article and Find Full Text PDF

Staphylococcus epidermidis biofilm formation is associated with the production of the polysaccharide intercellular adhesin (PIA)--poly-N-acetylglucosamine polysaccharide (PNAG) by the products of the icaADBC operon. Recent evidence indicates that SarA, a central regulatory element that controls the production of Staphylococcus aureus virulence factors, is essential for the synthesis of PIA/PNAG and the ensuing biofilm development in this species. Based on the presence of a sarA homolog, we hypothesized that SarA could also be involved in the regulation of the biofilm formation process in S.

View Article and Find Full Text PDF

1 The role of nitric oxide (NO) in the effects of low endotoxemia on gastric damage and blood flow has been evaluated in indomethacin-treated rats. 2 Pretreatment (-1 h) with endotoxin (40 micro g kg(-1)) reduced gastric damage induced by indomethacin (20 mg kg(-1)) in conscious rats. 3 Endotoxin prevented the reduction in gastric blood flow (laser Doppler flowmetry) induced by indomethacin in pentobarbital-anaesthetised rats.

View Article and Find Full Text PDF