In this paper, we reported the synthesis and characterization of CoNiCuCrS nanoparticle alloys using scanning transmission electron microscopy (STEM) techniques. The nanoparticles form hexagonal platelets with an average size of 34.5 nm.
View Article and Find Full Text PDFL-lysine functionalized gold nanoparticles (AuNPs-Lys) have been widely used for the detection of worldwide interest analytes. In this work, a colorimetric assay for the detection of the carcinogen aflatoxin B (AFB) based on the aggregation of AuNPs-Lys in the presence of copper ions was developed. For this purpose, AuNPs were synthesized in citrate aqueous solution, functionalized, and further characterized by UV-Vis, fluorescence, Fourier transform infrared spectroscopy (FTIR), nanoparticle tracking analysis (NTA), dynamic light scattering (DLS), and transmission electron microscopy (TEM).
View Article and Find Full Text PDFNano Lett
April 2024
Given the binary nature of nanoalloy systems, their properties are dependent on their size, shape, structure, composition, and chemical ordering. When energy and entropic factors for shapes and structure variations are considered in nanoparticle growth, the spectra of shapes become so vast that even metastable arrangements have been reported under ambient conditions. Experimental and theoretical variations of multiply twinned particles have been observed, from the Ino and Marks decahedra to polyicosahedra and polydecahedra with comparable energetic stability among them.
View Article and Find Full Text PDFHerein, we report the synthesis of novel platinum-based nanoparticles with step-pyramidal growth induced by poly(diallyldimethylammonium chloride) (PDDA). The complex stepped pyramidal shape became the central point for outstanding catalytic reduction of 4-nitrophenol, overcoming the activity of bare Pt nanoparticles. These results are valuable for the catalytic degradation of reactive molecules.
View Article and Find Full Text PDFDesigning N-coordinated porous single-atom catalysts (SACs) for the oxygen reduction reaction (ORR) is a promising approach to achieve enhanced energy conversion due to maximized atom utilization and higher activity. Here, we report two Co(II)-porphyrin/ [2,1,3]-benzothiadiazole (BTD)-based covalent organic frameworks (COFs; Co@-PorBTD and Co@-PorBTD), which are efficient SAC systems for O electrocatalysis (ORR). Experimental results demonstrate that these two COFs outperform the mass activity (at 0.
View Article and Find Full Text PDFHybrid carbon nanomaterials, such as those that incorporate carbon nanotubes into graphene sheets, have been found to display interesting mechanical and electrical properties because of their covalent bonding and π-π stacking domains. However, synthesis of these hybrid materials is limited by the high energetic cost of techniques like chemical vapor deposition. Here, we demonstrate the solvent- and gas-free synthesis of a 2D carbon nanotube/graphene network through flash Joule heating of pristine carbon nanotubes.
View Article and Find Full Text PDFExtensive burns represent a significant challenge in biomedicine due to the multiple systemic and localized complications resulting from the major skin barrier loss. The functionalization of xenografts with nanostructured antibacterial agents proposes a fast and accessible application to restore barrier function and prevent localized bacterial contamination. Based on this, the objective of this work was to functionalize a xenograft by electrospray deposition with silver nanoparticles (AgNPs) and to evaluate its antibiofilm and cytotoxic effects on human fibroblasts.
View Article and Find Full Text PDFWe present a systematic density functional theory study to determine the electronic structure of bending 2H-MoS layers up to 75° using information from in-situ nanoindentation TEM observations. The results from HOMO/LUMO and density of states plots indicate a metallic transition from the typical semiconducting phase, near Fermi energy level () as a function of bending, which can mainly occur due to bending curvatures inducing a stretching and contracting of sulfur-sulfur chemical bonds located mostly over basal (001)-plane; furthermore, molybdenum ions play a major role in such transitions due to reallocation of their metallic -character orbitals and the creation of "", possibly having an overlap between Mo and Mo orbitals. This research on the metallic transition of 2H-MoS allows us to understand the high catalytic activity for MoS nanostructures as extensively reported in the literature.
View Article and Find Full Text PDFThe field of nanoalloys has been advancing at a rapid pace in the last two decades. Many new characterization methods and theoretical advances have produced a substantial knowledge of the nanoalloys' properties and structure. Most of the work has been limited to binary alloys.
View Article and Find Full Text PDFThe COVID-19 pandemic demonstrated the critical need for accurate and rapid testing for virus detection. This need has generated a high number of new testing methods aimed at replacing RT-PCR, which is the golden standard for testing. Most of the testing techniques are based on biochemistry methods and require chemicals that are often expensive and the supply might become scarce in a large crisis.
View Article and Find Full Text PDFIn this report, we investigate the toxicity of the ionophore thiomaltol (Htma) and Cu salts to melanoma. Divalent metal complexes of thiomaltol display toxicity against A375 melanoma cell culture resulting in a distinct apoptotic response at submicromolar concentrations, with toxicity of Cu(tma)2 > Zn(tma)2 >> Ni(tma)2. In metal-chelated media, Htma treatment shows little toxicity, but the combination with supplemental CuCl2, termed Cu/Htma treatment, results in toxicity that increases with suprastoichiometric concentrations of CuCl2 and correlates with the accumulation of intracellular copper.
View Article and Find Full Text PDFCopper-platinum alloys are important binary alloys in catalysis. In this communication, we demonstrate that it is possible to preserve the thermal properties of platinum with a copper-platinum alloy by converting the substitutional alloy into an interstitial one. This conversion occurs when the size of the copper-platinum system is reduced down to the nanoscale.
View Article and Find Full Text PDFObjectives: The aim of this study was to investigate the effect of the nanostructured hydroxyapatite (NHAp) and titanium dioxide nanoparticles (NTiO) on dispersion in an adhesive containing monomers of Dipenta erythritol penta-acrylate monophosphate (PENTA) and Urethane dimethacrylate (UDMA), as well as evaluating the structural, optical and mechanical behavior of the composite material for dental aesthetic application.
Methods: The NHAp powders were synthesized through the wet chemical methods of hydrothermal and ultrasound-assisted precipitation. The microstructure, morphology and composition analysis of the powder of NHAp and NTiO were performed by scanning and transmission electron microscopy.
Antimony selenide (SbSe) is a material widely used in photodetectors and relatively new as a possible material for thermoelectric applications. Taking advantage of the new properties after nanoscale fabrication, this material shows great potential for the development of efficient low temperature thermoelectric devices. Here we study the synthesis, the crystal properties and the thermal and thermoelectric transport response of SbSe hexagonal nanotubes (HNT) in the temperature range between 120 and 370 K.
View Article and Find Full Text PDFNanoparticles and metallic clusters continue to make a remarkable impact on novel and emerging technologies. In recent years, there have been impressive advances in the controlled synthesis of clusters and their advanced characterization. One of the most common ways to determine the structures of nanoparticles and clusters is by means of X-ray diffraction methods.
View Article and Find Full Text PDFMany reliable and reproducible methods exist for manufacturing gold nanoparticles with the desired and specific compositions, structures, arrangements, and physicochemical properties. In this report, we review the key principles guiding the formation and growth of nanoclusters, their evolution into nanoparticles, and the role and contribution of coatings. We describe a range of imaging methods for characterization of nanoparticles at atomic resolution and a range of spectroscopy methods for structural and physicochemical characterization of such nanoparticles.
View Article and Find Full Text PDFThe increasing impact of metallic nanoparticles on life sciences has stimulated the development of new techniques and multiple improvements to the existing methods of manufacturing nanoparticles with tailored properties. Nanoparticles can be synthesized through a variety of physical and chemical methods. The choice of preparation procedure will depend on the physical and chemical characteristics required in the final product, such as size, dispersion, chemical miscibility, and optical properties, among others.
View Article and Find Full Text PDFis an emerging pathogenic fungus implicated in healthcare-associated outbreaks and causes bloodstream infections associated with high mortality rates. Biofilm formation represents one of the major pathogenetic traits associated with this microorganism. Unlike most other species, has the ability to survive for weeks on different surfaces.
View Article and Find Full Text PDFWe report a combined experimental/theoretical approach to study the connection of S-vacancies and wrinkling on MoS layers, and how this feature produces significant changes in the electronic structure and reactivity of this 2D material. The MoS material, when used as a catalyst in operative conditions, was found to be mainly composed of thin and short 1-5 layer sheets instead of a poorly crystalline structure, as it was previously assumed. Notably wrinkled structures with S-vacancies were also found through transmission electron microscopy.
View Article and Find Full Text PDFPurpose: To demonstrate the usefulness of sialic acid (SA) in saliva as a biomarker for breast cancer (BC) and develop a new tool for early detection.
Methods: Considering that the amount of SA in human saliva is limited, the levels of SA were measured using surface-enhanced Raman spectroscopy (SERS) with tailored citrate-reduced silver nanoparticles. We calibrated the spectrum using analytical reagent SA.