Publications by authors named "Miguel J Yacaman"

In this paper, we reported the synthesis and characterization of CoNiCuCrS nanoparticle alloys using scanning transmission electron microscopy (STEM) techniques. The nanoparticles form hexagonal platelets with an average size of 34.5 nm.

View Article and Find Full Text PDF

Designing N-coordinated porous single-atom catalysts (SACs) for the oxygen reduction reaction (ORR) is a promising approach to achieve enhanced energy conversion due to maximized atom utilization and higher activity. Here, we report two Co(II)-porphyrin/ [2,1,3]-benzothiadiazole (BTD)-based covalent organic frameworks (COFs; Co@-PorBTD and Co@-PorBTD), which are efficient SAC systems for O electrocatalysis (ORR). Experimental results demonstrate that these two COFs outperform the mass activity (at 0.

View Article and Find Full Text PDF

Hybrid carbon nanomaterials, such as those that incorporate carbon nanotubes into graphene sheets, have been found to display interesting mechanical and electrical properties because of their covalent bonding and π-π stacking domains. However, synthesis of these hybrid materials is limited by the high energetic cost of techniques like chemical vapor deposition. Here, we demonstrate the solvent- and gas-free synthesis of a 2D carbon nanotube/graphene network through flash Joule heating of pristine carbon nanotubes.

View Article and Find Full Text PDF

The field of nanoalloys has been advancing at a rapid pace in the last two decades. Many new characterization methods and theoretical advances have produced a substantial knowledge of the nanoalloys' properties and structure. Most of the work has been limited to binary alloys.

View Article and Find Full Text PDF

Objectives: The aim of this study was to investigate the effect of the nanostructured hydroxyapatite (NHAp) and titanium dioxide nanoparticles (NTiO) on dispersion in an adhesive containing monomers of Dipenta erythritol penta-acrylate monophosphate (PENTA) and Urethane dimethacrylate (UDMA), as well as evaluating the structural, optical and mechanical behavior of the composite material for dental aesthetic application.

Methods: The NHAp powders were synthesized through the wet chemical methods of hydrothermal and ultrasound-assisted precipitation. The microstructure, morphology and composition analysis of the powder of NHAp and NTiO were performed by scanning and transmission electron microscopy.

View Article and Find Full Text PDF

Nanoparticles and metallic clusters continue to make a remarkable impact on novel and emerging technologies. In recent years, there have been impressive advances in the controlled synthesis of clusters and their advanced characterization. One of the most common ways to determine the structures of nanoparticles and clusters is by means of X-ray diffraction methods.

View Article and Find Full Text PDF

Heteroatom-doped metal-free graphene has been widely studied as the catalyst for the oxygen reduction reaction (ORR). Depending on the preparation method and the dopants, the ORR activity varies ranging from a two-electron to a four-electron pathway. The different literature reports are difficult to correlate due to the large variances.

View Article and Find Full Text PDF

The skin wounds cause serious burden to healthcare systems. The lack of sterility of the innate barrier function of the skin facilitates the development of microbial communities within the wound environment especially in biofilm form. Since biofilm is difficult to eradicate, new treatments have been established, such as silver nanoparticles (AgNPs), which antimicrobial and anti-biofilm properties have been studied, nevertheless, their toxic effects are known too.

View Article and Find Full Text PDF

Highly crystalline indium tin oxide (ITO) nanowires were grown via a vapor-liquid-solid method, with thermal tolerance up to ∼1300 °C. We report the electric and thermoelectric properties of the ITO nanowires before and after heat treatments and draw conclusions about their applicability as thermoelectric building blocks in nanodevices that can operate in high temperature conditions. The Seebeck coefficient and the thermal and electrical conductivities were measured in each individual nanowire by means of specialized micro-bridge thermometry devices.

View Article and Find Full Text PDF

Here we report on the identification and applications of an aqueous 29-atom silver cluster stabilized with 12 lipoate ligands, i.e. Ag(R-α-LA) or (29,12), wherein R-α-LA = R-α-lipoic acid, a natural dithiolate.

View Article and Find Full Text PDF

Solving the atomic structure of metallic clusters is fundamental to understanding their optical, electronic, and chemical properties. Herein we present the structure of the largest aqueous gold cluster, Au(p-MBA) (p-MBA: para-mercaptobenzoic acid), solved by electron micro-diffraction (MicroED) to subatomic resolution (0.85 Å) and by X-ray diffraction at atomic resolution (1.

View Article and Find Full Text PDF

Detectors, photo-emitter, and other high order radiation devices work under the principle of directionality to enhance the power of emission/transmission in a particular direction. In order to understand such directionality, it is important to study their coupling mechanism of their active elements. In this work, we present a crystalline orientation analysis of ZnO nanorods grown epitaxially on the pentagonal faces of silver nanowires.

View Article and Find Full Text PDF

The synthesis of Au@AgAu yolk-shell cuboctahedra nanoparticles formed by galvanic replacement in a seed-mediated method is described. Initially, single-crystal Au seeds are used for the formation of Au@Ag core-shell nanocubes, which serve as the template material for the deposition of an external Au layer. The well-controlled synthesis yields the formation of cuboctahedra nanoparticles with smooth inner and outer Au/Ag surfaces.

View Article and Find Full Text PDF

Silver nanoparticles offer a possible means of fighting antibacterial resistance. Most of their antibacterial properties are attributed to their silver ions. In the present work, we study the actions of positively charged silver nanoparticles against both methicillin-sensitive Staphylococcus aureus and methicillin-resistant Staphylococcus aureus.

View Article and Find Full Text PDF

At the atomic-cluster scale, pure boron is markedly similar to carbon, forming simple planar molecules and cage-like fullerenes. Theoretical studies predict that two-dimensional (2D) boron sheets will adopt an atomic configuration similar to that of boron atomic clusters. We synthesized atomically thin, crystalline 2D boron sheets (i.

View Article and Find Full Text PDF

A MoS2(1-x) P(x) solid solution (x = 0 to 1) is formed by thermally annealing mixtures of MoS2 and red phosphorus. The effective and stable electrocatalyst for hydrogen evolution in acidic solution holds promise for replacing scarce and expensive platinum that is used in present catalyst systems. The high performance originates from the increased surface area and roughness of the solid solution.

View Article and Find Full Text PDF

Conditions for the dispersion of molybdenum disulfide (MoS2) in aqueous solution at concentrations up to 0.12 mg mL(-1) using a range of nonionic, biocompatible block copolymers (i.e.

View Article and Find Full Text PDF

Reduction of water to hydrogen through electrocatalysis holds great promise for clean energy, but its large-scale application relies on the development of inexpensive and efficient catalysts to replace precious platinum catalysts. Here we report an electrocatalyst for hydrogen generation based on very small amounts of cobalt dispersed as individual atoms on nitrogen-doped graphene. This catalyst is robust and highly active in aqueous media with very low overpotentials (30 mV).

View Article and Find Full Text PDF
Article Synopsis
  • Silver nanoparticles (AgNPs) are widely used in consumer products for their antimicrobial properties, but their potential toxicity to human cells is a growing concern.
  • This study investigates how silver nanoclusters (AgNC) less than 2 nm in diameter affect peripheral blood mononuclear cells (PBMC) in vitro, using flow cytometry and comet assays to measure effects.
  • The results indicate that exposure to AgNC led to the generation of reactive oxygen species, DNA damage, and cell apoptosis in a dose-dependent manner, with significant cytotoxic effects observed even at low concentrations that mimic real-world exposure scenarios.
View Article and Find Full Text PDF

The adsorption of very small rhenium clusters (2-13 atoms) supported on graphene was studied by high-angle annular dark field-scanning transmission electron microscopy (HAADF-STEM). The atomic structure of the clusters was fully resolved with the aid of density functional theory calculations and STEM simulations. It was found that octahedral and tetrahedral structures work as seeds to obtain more complex morphologies.

View Article and Find Full Text PDF

In order to determine how functionalized gold nanoparticles (AuNPs) interact in a near-physiological environment, we performed all-atom molecular dynamics simulations on the icosahedral Au144 nanoparticles each coated with a homogeneous set of 60 thiolates selected from one of these five (5) types: 11-mercapto-1-undecanesulfonate -SC11H22(SO3(-)), 5-mercapto-1-pentanesulfonate -SC5H10(SO3(-)), 5-mercapto-1-pentaneamine -SC5H10(NH3(+)), 4-mercapto-benzoate -SPh(COO(-)), or 4-mercapto-benzamide -SPh(CONH3(+)). These thiolates were selected to elucidate how the aggregation behavior of AuNPs depends on ligand parameters, including the charge of the terminal group (anionic vs. cationic), and its length and conformational flexibility.

View Article and Find Full Text PDF

The cost effective synthesis and patterning of carbon nanomaterials is a challenge in electronic and energy storage devices. Here we report a one-step, scalable approach for producing and patterning porous graphene films with three-dimensional networks from commercial polymer films using a CO infrared laser. The sp-carbon atoms are photothermally converted to sp-carbon atoms by pulsed laser irradiation.

View Article and Find Full Text PDF

Two-dimensional transition metal dichalcogenides have emerged as leading successors to graphene due to their diverse properties, which depend sensitively on sample thickness. Although solution-based exfoliation methods hold promise for scalable production of these materials, existing techniques introduce irreversible structural defects and/or lack sufficient control over the sample thickness. In contrast, previous work on carbon nanotubes and graphene has shown that isopycnic density gradient ultracentrifugation can produce structurally and electronically monodisperse nanomaterial populations.

View Article and Find Full Text PDF

As the cylindrical sp(2)-bonded carbon allotrope, carbon nanotubes (CNTs) have been widely used to reinforce bulk materials such as polymers, ceramics, and metals. However, both the concept demonstration and the fundamental understanding on how 1D CNTs reinforce atomically thin 2D layered materials, such as graphene, are still absent. Here, we demonstrate the successful synthesis of CNT-toughened graphene by simply annealing functionalized CNTs on Cu foils without needing to introduce extraneous carbon sources.

View Article and Find Full Text PDF