Publications by authors named "Miguel Garzon"

The hypothalamic hypocretinergic/orexinergic (Hcrt/Ox) system is involved in many physiological and pathophysiological processes. Malfunction of Hcrt/Ox transmission results in narcolepsy, a sleep disease caused in humans by progressive neurodegeneration of hypothalamic neurons containing Hcrt/Ox. To explore the Hcrt/Ox system plasticity we systemically administered suvorexant (a dual Hcrt/Ox receptor antagonist) in rats to chronically block Hcrt/Ox transmission without damaging Hcrt/Ox cells.

View Article and Find Full Text PDF

Chronic adolescent administration of marijuana's major psychoactive compound, ∆9-tetrahydrocannabinol (Δ9-THC), produces adaptive changes in adult social and cognitive functions sustained by prelimbic prefrontal cortex (PL-PFC). Memory and learning processes in PL-PFC neurons can be regulated through cholinergic muscarinic-2 receptors (M2R) and modulated by activation of cannabinoid-1 receptors (CB1Rs) targeted by Δ9-THC. Thus, chronic exposure to Δ9-THC during adolescence may alter the expression and/or distribution of M2Rs in PL-PFC neurons receiving CB1R terminals.

View Article and Find Full Text PDF

Long-term cannabis use during adolescence has deleterious effects in brain that are largely ascribed to the activation of cannabinoid-1 receptors (CB1Rs) by delta-9-tetrahydrocannabinol (∆9-THC), the primary psychoactive compound in marijuana. Systemic administration of ∆9-THC inhibits acetylcholine release in the prelimbic-prefrontal cortex (PL-PFC). In turn, PL-PFC acetylcholine plays a role in executive activities regulated by CB1R-targeting endocannabinoids, which are generated by cholinergic stimulation of muscarinic-1 receptors (M1Rs).

View Article and Find Full Text PDF

The Locus Coeruleus (LC) is a pontine nucleus involved in many physiological processes, including the control of the sleep/wake cycle (SWC). At cellular level, the LC displays a high density of opioid receptors whose activation decreases the activity of LC noradrenergic neurons. Also, microinjections of morphine administered locally in the LC of the cat produce sleep associated with synchronized brain activity in the electroencephalogram (EEG).

View Article and Find Full Text PDF

Chronic hepatitis B virus (HBV) infection is a major cause of liver disease and cancer worldwide for which there are no curative therapies. The major challenge in curing infection is eradicating or silencing the covalent closed circular DNA (cccDNA) form of the viral genome. The circadian factors BMAL1/CLOCK and REV-ERB are master regulators of the liver transcriptome and yet their role in HBV replication is unknown.

View Article and Find Full Text PDF

Polymorphisms in the region of the calmodulin-dependent kinase isoform D (CaMK1D) gene are associated with increased incidence of diabetes, with the most common polymorphism resulting in increased recognition by transcription factors and increased protein expression. While reducing CaMK1D expression has a potentially beneficial effect on glucose processing in human hepatocytes, there are no known selective inhibitors of CaMK1 kinases that can be used to validate or translate these findings. Here we describe the development of a series of potent, selective, and drug-like CaMK1 inhibitors that are able to provide significant free target cover in mouse models and are therefore useful as tool compounds.

View Article and Find Full Text PDF

There is little information on either the transition state occurring between slow-wave sleep (SWS) and rapid eye movement (REM) sleep, as well as about its neurobiological bases. This transition state, which is known as the intermediate state (IS), is well-defined in rats but poorly characterized in cats. Previous studies in our laboratory demonstrated that cholinergic stimulation of the perilocus coeruleus α nucleus (PLCα) in the pontine tegmentum of cats induced two states: wakefulness with muscle atonia and a dissociated sleep we have called the SPGO state.

View Article and Find Full Text PDF

One of the main limiting factors for a widespread industrial use of the Selective Laser Melting Process it its lack of productivity, which restricts the use of this technology just for high added-value components. Typically, the thickness of the metallic powder that is used lies on the scale of micrometers. The use of a layer up to one millimeter would be necessarily associated to a dramatic increase of productivity.

View Article and Find Full Text PDF

Muscarinic m2 receptors (M2Rs) are implicated in autoregulatory control of cholinergic output neurons located within the pedunculopontine (PPT) and laterodorsal tegmental (LTD) nuclei of the mesopontine tegmentum (MPT). However, these nuclei contain many noncholinergic neurons in which activation of M2R heteroceptors may contribute significantly to the decisive role of the LTD and PPT in sleep-wakefulness. We examined the electron microscopic dual immunolabeling of M2Rs and the vesicular acetylcholine transporter (VAchT) in the MPT of rat brain to identify the potential sites for M2R activation.

View Article and Find Full Text PDF

Pyridinium N-(heteroaryl)aminides can be employed as robust and practical synthetic equivalents of nucleophilic 1,3-N,N-dipoles in a formal cycloaddition onto electron-rich alkynes under gold catalysis. Convergent and regioselective access to five types of imidazo-fused heteroaromatics is provided from the appropriate aminide. The efficient transformation accommodates significant structural variation around the aminide, ynamide, or indolyl-alkyne reactants and tolerates sensitive functional groups.

View Article and Find Full Text PDF

Background: Hypocretins/orexins (Hcrt/Ox) are hypothalamic neuropeptides involved in sleep-wakefulness regulation. Deficiency in Hcrt/Ox neurotransmission results in the sleep disorder narcolepsy, which is characterized by an inability to maintain wakefulness. The Hcrt/Ox neurons are maximally active during wakefulness and project widely to the ventral tegmental area (VTA).

View Article and Find Full Text PDF

The perifornical area in the posterior lateral hypothalamus (PeFLH) has been implicated in several physiological functions including the sleep-wakefulness regulation. The PeFLH area contains several cell types including those expressing orexins (Orx; also known as hypocretins), mainly located in the PeF nucleus. The aim of the present study was to elucidate the synaptic interactions between Orx neurons located in the PeFLH area and different brainstem neurons involved in the generation of wakefulness and sleep stages such as the locus coeruleus (LC) nucleus (contributing to wakefulness) and the oral pontine reticular nucleus (PnO) nucleus (contributing to REM sleep).

View Article and Find Full Text PDF

Muscarinic modulation of mesolimbic dopaminergic neurons in the ventral tegmental area (VTA) plays an important role in reward, potentially mediated through the M5 muscarinic acetylcholine receptor (M5R). However, the key sites for M5R-mediated control of dopamine neurons within this region are still unknown. To address this question we examined the electron microscopic immunocytochemical localization of antipeptide antisera against M5R and the plasmalemmal dopamine transporter (DAT) in single sections through the rat VTA.

View Article and Find Full Text PDF

The state of non-REM sleep (NREM), or slow wave sleep, is associated with a synchronized EEG pattern in which sleep spindles and/or K complexes and high-voltage slow wave activity (SWA) can be recorded over the entire cortical surface. In humans, NREM is subdivided into stages 2 and 3-4 (presently named N3) depending on the proportions of each of these polygraphic events. NREM is necessary for normal physical and intellectual performance and behavior.

View Article and Find Full Text PDF

Cortical activation and goal-directed behaviors characterize wakefulness. One cortical region especially involved in these phenomena is the medial prefrontal cortex (mPFC), which receives many inputs from cholinergic-containing neurons in brain stem structures implicated in arousal and wakefulness, such as the laterodorsal tegmental nucleus (LDT). Hypocretins/orexins (Hcrt/Ox), whose dysfunction is linked to narcolepsy, maintains arousal and stabilizes sleep-wakefulness states.

View Article and Find Full Text PDF

The Hypocretin1/OrexinA (Hcrt1/OxA) neuropeptides are found in a group of posterolateral hypothalamus neurons and are involved in sleep-wakefulness cycle regulation. Hcrt1/OxA neurons project widely to brainstem aminergic structures, such as the locus coeruleus (LC), which are involved in maintenance of wakefulness and EEG activation through intense projections to the medial prefrontal cortex (mPFC). Moreover, defects of the Hcrt1/OxA system are linked to narcolepsy, a disorder characterized by excessive diurnal hypersomnia and REM state disturbance.

View Article and Find Full Text PDF

Sleep is a necessary, diverse, periodic, and an active condition circadian and homeostatically regulated and precisely meshed with waking time into the sleep-wakefulness cycle (SWC). Photic retinal stimulation modulates the suprachiasmatic nucleus, which acts as the pacemaker for SWC rhythmicity. Both the light period and social cues adjust the internal clock, making the SWC a circadian, 24-h period in the adult human.

View Article and Find Full Text PDF

The glutamate-glutamine cycle faces a drain of glutamate by oxidation, which is balanced by the anaplerotic synthesis of glutamate and glutamine in astrocytes. De novo synthesis of glutamate by astrocytes requires an amino group whose origin is unknown. The deficiency in Aralar/AGC1, the main mitochondrial carrier for aspartate-glutamate expressed in brain, results in a drastic fall in brain glutamine production but a modest decrease in brain glutamate levels, which is not due to decreases in neuronal or synaptosomal glutamate content.

View Article and Find Full Text PDF

Increasing evidence has implicated megalin, a low-density lipoprotein receptor-related protein, in the pathogenesis of Alzheimer's disease (AD). In the brain, megalin is expressed in brain capillaries, ependymal cells and choroid plexus, where it participates in the clearance of brain amyloid β-peptide (Aβ) complex. Recently, megalin has also been detected in oligodendrocytes and astrocytes.

View Article and Find Full Text PDF

Hypocretinergic/orexinergic neurons, which are known to be implicated in narcolepsy, project to the pontine tegmentum areas involved in the control of rapid eye movement (REM) sleep. Here, we report the effects on sleep-wakefulness produced by low-volume microinjections of hypocretin (Hcrt)1 (20-30 nL, 100, 500 and 1000 microm) and carbachol (20-30 nL, 0.1 m) delivered in two areas of the oral pontine tegmentum of free-moving cats with electrodes for chronic sleep recordings: in the dorsal oral pontine tegmentum (DOPT) and in the ventral part of the oral pontine reticular nucleus (vRPO).

View Article and Find Full Text PDF

We recently identified the thalamic dopaminergic system in the human and macaque monkey brains, and, based on earlier reports on the paucity of dopamine in the rat thalamus, hypothesized that this dopaminergic system was particularly developed in primates. Here we test this hypothesis using immunohistochemistry against the dopamine transporter (DAT) in adult macaque and rat brains. The extent and density of DAT-immunoreactive (-ir) axons were remarkably greater in the macaque dorsal thalamus, where the mediodorsal association nucleus and the ventral motor nuclei held the densest immunolabeling.

View Article and Find Full Text PDF

The ventral division of the reticular oral pontine nucleus (vRPO) is a pontine tegmentum region critically involved in REM sleep generation. Previous reports of morphine microinjections in the cat pontine tegmentum have shown that opioid receptor activation in this region modulates REM sleep. Even though opiate administration has marked effects on sleep-wake cycle architecture, the distribution of opioid receptors in vRPO has only been partially described.

View Article and Find Full Text PDF

Acetylcholine can affect cognitive functions and reward, in part, through activation of muscarinic receptors in the ventral tegmental area (VTA) to evoke changes in mesocorticolimbic dopaminergic transmission. Among the known muscarinic receptor subtypes present in the VTA, the M2 receptor (M2R) is most implicated in autoregulation and also may play a heteroreceptor role in regulation of the output of the dopaminergic neurons. We sought to determine the functionally relevant sites for M2R activation in relation to VTA dopaminergic neurons by examining the electron microscopic immunolabeling of M2R and the dopamine transporter (DAT) in the VTA of rat brain.

View Article and Find Full Text PDF

Enkephalin (ENK) immunoreactivity is widely distributed in the ventral tegmental area (VTA), where endogenous ENK and dynorphin opioid peptides are known to have opposing actions in reward, stress, cognition, and fear-related behaviors. Many neurons in the VTA give rise to mesocortical projections terminating in the medial prefrontal cortex (mPFC), and these projections have been implicated to varying extents in all these functions. To determine whether there is a synaptic basis for ENK and/or dynorphin modulation of cortically projecting neurons within the VTA, we combined retrograde tract-tracing from the mPFC with dual immunocytochemical-labeling electron microscopy in the rat VTA.

View Article and Find Full Text PDF

We employed polygraphic recordings and behavioral measures to study the effects of chronic morphine use upon the isolated forebrain and the decerebrate animal in cats with a midbrain transection. Cats received morphine for 12 days, and 24 h recording sessions were conducted on days 1 and 11. For the decerebrate cat, the percent time of rapid eye movement (REM) sleep was reduced during the 24 h period on both days 1 and 11.

View Article and Find Full Text PDF