Chemical crop protection is widely used to control plant diseases. However, the adverse effects of pesticide use on human health and environment, resistance development and the impact of regulatory requirements on the crop protection market urges the agrochemical industry to explore innovative and alternative approaches. In that context, we demonstrate here the potential of camelid single domain antibodies (VHHs) generated against fungal glucosylceramides (fGlcCer), important pathogenicity factors.
View Article and Find Full Text PDFPlant Physiol Biochem
November 2008
The novel classes of plant pathogenesis-related (PR) proteins identified during the last decade also include novel peptide families. This review specifically focuses on these pathogenesis-related peptides, including proteinase inhibitors (PR-6 family), plant defensins (PR-12 family), thionins (PR-13 family) and lipid transfer proteins (PR-14 family). For each family of PR peptides, the general features concerning occurrence, expression and possible functions of their members are described.
View Article and Find Full Text PDFPlant defensins, exhibiting various levels of inhibitory activity against fungal pathogens, are potent candidates for pharmaceutical or agricultural antimycotics. Study of the plant defensins from the model plant Arabidopsis thaliana requires the purification of these peptides. However, heterologous production of defensins for large-scale in vitro bioactivity assays is often experienced as a major problem.
View Article and Find Full Text PDFMany studies in both animal and plant systems have shown that matrix attachment regions (MARs) can increase the expression of flanking transgenes. However, our previous studies revealed no effect of the chicken lysozyme MARs (chiMARs) on transgene expression in the first generation transgenic Arabidopsis thaliana plants transformed with a beta-glucuronidase gene (uidA) unless gene silencing mutants were used as genetic background for transformation. In the present study, we investigated why chiMARs do not influence transgene expression in transgenic wild-type Arabidopsis plants.
View Article and Find Full Text PDFThe phytohormone ethylene is a principal modulator in many aspects of plant life, including various mechanisms by which plants react to pathogen attack. Induced ethylene biosynthesis and subsequent intracellular signaling through a single conserved pathway have been well characterized. This leads to a cascade of transcription factors consisting of primary EIN3-like regulators and downstream ERF-like transcription factors.
View Article and Find Full Text PDFBasic and applied research involving transgenic plants often requires consistent high-level expression of transgenes. However, high inter-transformant variability of transgene expression caused by various phenomena, including gene silencing, is frequently observed. Here, we show that stable, high-level transgene expression is obtained using Arabidopsis thaliana post-transcriptional gene silencing (PTGS) sgs2 and sgs3 mutants.
View Article and Find Full Text PDFWe have constructed a binary vector for Agrobacterium-mediated plant transformation, which has a multiple cloning site consisting of 13 hexanucleotide restriction sites, 6 octanucleotide restriction sites and 5 homing endonuclease sites. The homing endonuclease sites have the advantages to be extremely rare in natural sequences and to allow unidirectional cloning. We have also constructed a set of auxiliary vectors allowing the assembly of expression cassettes flanked by homing endonuclease sites.
View Article and Find Full Text PDFWe developed a method for expression in Arabidopsis of a transgene encoding a cleavable chimeric polyprotein. The polyprotein precursor consists of a leader peptide and two different antimicrobial proteins (AMPs), DmAMP1 originating from Dahlia merckii seeds and RsAFP2 originating from Raphanus sativus seeds, which are linked by an intervening sequence ("linker peptide") originating from a natural polyprotein occurring in seed of Impatiens balsamina. The chimeric polyprotein was found to be cleaved in transgenic Arabidopsis plants and the individual AMPs were secreted into the extracellular space.
View Article and Find Full Text PDF