Curr Opin Struct Biol
August 2015
The antibody repertoire is the fundamental unit that enables development of antigen specific adaptive immune responses against pathogens. Different species have developed diverse genetic and structural strategies to create their respective antibody repertoires. Here we review the shark, chicken, camel, and cow repertoires as unique examples of structural and genetic diversity.
View Article and Find Full Text PDFThe first two cases of scorpion envenoming caused by Tityus neoespartanus (Buthidae) are described. The accidents took place within human environments (one inside a home and the other inside a school), in the village of La Sierra, Margarita Island, State of Nueva Esparta, northeastern Venezuela. Both cases were moderately severe and developed pancreatic involvement and electrocardiographic abnormalities.
View Article and Find Full Text PDFPhi-values, a relatively direct probe of transition-state structure, are an important benchmark in both experimental and theoretical studies of protein folding. Recently, however, significant controversy has emerged regarding the reliability with which phi-values can be determined experimentally: Because phi is a ratio of differences between experimental observables it is extremely sensitive to errors in those observations when the differences are small. Here we address this issue directly by performing blind, replicate measurements in three laboratories.
View Article and Find Full Text PDFNegative phi-values, which arise, for example, when a mutation stabilizes the folding transition state while destabilizing the native state, have been the focus of significant theoretical interest. Here we survey the experimental folding kinetics literature to ascertain the frequency with which negative phi-values occur in two-state proteins and describe the detailed experimental characterization of a negative phi-value previously reported to be among the most statistically significant. We find that, while almost 9% of more than 500 reported phi-values (from a set of 16, well-characterized two-state proteins) fall below zero, many of these do not represent statistically significant observations.
View Article and Find Full Text PDFRecent years have seen the publication of both empirical and theoretical relationships predicting the rates with which proteins fold. Our ability to test and refine these relationships has been limited, however, by a variety of difficulties associated with the comparison of folding and unfolding rates, thermodynamics, and structure across diverse sets of proteins. These difficulties include the wide, potentially confounding range of experimental conditions and methods employed to date and the difficulty of obtaining correct and complete sequence and structural details for the characterized constructs.
View Article and Find Full Text PDFWe have monitored the effects of salts and denaturants on the folding of the simple, two-state protein FynSH3. As predicted by Debye-Huckel limiting law, both the stability and (log) folding rate of FynSH3 increase nearly perfectly linearly (r(2)> 0.99) with the square root of ionic strength upon increasing concentrations of the relatively nonchaotropic salt sodium chloride.
View Article and Find Full Text PDF