Periparturient dairy cows exhibit intense lipolysis driven by reduced DMI, enhanced energy needs, and the loss of adipose tissue (AT) insulin sensitivity. Extended periods of low insulin sensitivity and negative energy balance induce lipolysis dysregulation, leading to increased disease susceptibility and poor lactation performance. Chromium (Cr) supplementation improves systemic insulin sensitivity, whereas palmitic acid (PA) increases energy availability for milk production.
View Article and Find Full Text PDFBackground: As cows transition from pregnancy to lactation, free fatty acids (FFA) are mobilized from adipose tissues (AT) through lipolysis to counter energy deficits. In clinically healthy cows, lipolysis intensity is reduced throughout lactation; however, if FFA release exceeds tissue demands or the liver's metabolic capacity, lipid byproducts accumulate, increasing cows' risk of metabolic and infectious disease. Endocannabinoids (eCBs) and their congeners, N-acylethanolamines (NAEs), are lipid-based compounds that modulate metabolism and inflammation.
View Article and Find Full Text PDFJ Anim Sci Biotechnol
April 2024
During the periparturient period, dairy cows exhibit negative energy balance due to limited appetite and increased energy requirements for lactogenesis. The delicate equilibrium between energy availability and expenditure puts cows in a state of metabolic stress characterized by excessive lipolysis in white adipose tissues (AT), increased production of reactive oxygen species, and immune cell dysfunction. Metabolic stress, especially in AT, increases the risk for metabolic and inflammatory diseases.
View Article and Find Full Text PDFDairy cows with clinical ketosis (CK) exhibit excessive adipose tissue (AT) lipolysis and systemic inflammation. Lipolysis in cows can be induced by the canonical (hormonally induced) and inflammatory lipolytic pathways. Currently, the most common treatment for CK is oral propylene glycol (PG); however, PG does not reduce lipolysis or inflammation.
View Article and Find Full Text PDFThe objective of this study was to evaluate the effects of prophylactic neomycin administration on Holstein bull calves' intestinal microbiota, bile acid (BA) metabolism, and transcript abundance of genes related to BA metabolism. A total of 36 calves were blocked by body weight and assigned to either non-medicated milk replacer (CTL), or neomycin for 14 days (ST) or 28 days (LT) in their milk replacer. At the end of the study, calves were euthanized to collect tissue and digesta samples from the gastrointestinal tract, liver, and adipose tissue for analysis of intestinal microbial diversity, bile acid concentration and profile in various body tissues, and gene expression related to bile acid, lipid, carbohydrate metabolism, and inflammation.
View Article and Find Full Text PDFExcessive and protracted lipolysis in adipose tissues of dairy cows is a major risk factor for clinical ketosis (CK). This metabolic disease is common in postpartum cows when lipolysis provides fatty acids as an energy substrate to offset negative energy balance. Lipolysis in cows can be induced by the canonical (hormonally induced) and inflammatory pathways.
View Article and Find Full Text PDFExcessive adipose tissue (AT) lipolysis around parturition in dairy cows is associated with impaired AT insulin sensitivity and increased incidence of metabolic diseases. Supplementing cows with oleic acid (OA) reduces circulating biomarkers of lipolysis and improves energy balance. Nevertheless, it is unclear if OA alters lipid trafficking in AT.
View Article and Find Full Text PDFAmplified adipose tissue (AT) lipolysis and suppressed lipogenesis characterize the periparturient period of dairy cows. The intensity of lipolysis recedes with the progression of lactation; however, when lipolysis is excessive and prolonged, disease risk is exacerbated and productivity compromised. Interventions that minimize lipolysis while maintaining adequate supply of energy and enhancing lipogenesis may improve periparturient cows' health and lactation performance.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
September 2022
During hypertension, vascular remodeling allows the blood vessel to withstand mechanical forces induced by high blood pressure (BP). This process is well characterized in the media and intima layers of the vessel but not in the perivascular adipose tissue (PVAT). In PVAT, there is evidence for fibrosis development during hypertension; however, PVAT remodeling is poorly understood.
View Article and Find Full Text PDFGestational diabetes (GD) is one of the most prevalent metabolic diseases in pregnant women worldwide. GD is a risk factor for adverse pregnancy outcomes, including macrosomia and preeclampsia. Given the multifactorial etiology and the complexity of its pathogenesis, GD requires advanced omics analyses to expand our understanding of the disease.
View Article and Find Full Text PDFIntense and protracted adipose tissue (AT) fat mobilization increases the risk of metabolic and inflammatory periparturient diseases in dairy cows. This vulnerability increases when cows have endotoxemia-common during periparturient diseases such as mastitis, metritis, and pneumonia-but the mechanisms are unknown. Fat mobilization intensity is determined by the balance between lipolysis and lipogenesis.
View Article and Find Full Text PDFBackground: Periparturient cows release fatty acid reserves from adipose tissue (AT) through lipolysis in response to the negative energy balance induced by physiological changes related to parturition and the onset of lactation. However, lipolysis causes inflammation and structural remodeling in AT that in excess predisposes cows to disease. The objective of this study was to determine the effects of the periparturient period on the transcriptomic profile of AT using NGS RNAseq.
View Article and Find Full Text PDF