Publications by authors named "Miguel Cabrerizo-Vilchez"

This study examined the interfacial evolution of individual bile salts (BSs) and their blends with phosphatidylcholine (BS/PC) to simulate the complex behaviour of human bile (HB) during lipolysis at the triglyceride/water interface. Using adsorption and desorption cycles, mimicking exposure to small intestinal fluids, we demonstrate that the interfacial behaviour of real HB can be replicated using simple mixtures of BSs and PC. Interfacial tension (IFT) measurements after lipolysis and desorption showed no significant differences (P > 0.

View Article and Find Full Text PDF

The petal effect is identified as a non-wetting state with high drop adhesion. The wetting behavior of petal surfaces is attributed to the papillose structure of their epidermis, which leads to a Cassie-Baxter regime combined with strong pinning sites. Under this scenario, sessile drops are pearl shaped and, unlike lotus-like surfaces, firmly attached to the surface.

View Article and Find Full Text PDF

Galvanized steel surfaces are widely used in industry as a solution to prevent corrosion of steel tools that operate in outdoor or corrosive and oxidative environments. These objects are coated with a zinc protective layer deposited by hot dip galvanization. Turning the surface of galvanized steel tools into superhydrophobic may lead to very useful functionalities, although it may be a difficult task, because the preservation of the thin zinc layer is a claim.

View Article and Find Full Text PDF

Emulsions are currently being used to encapsulate and deliver nutrients and drugs to tackle different gastrointestinal conditions such as obesity, nutrient fortification, food allergies, and digestive diseases. The ability of an emulsion to provide the desired functionality, namely, reaching a specific site within the gastrointestinal tract, inhibiting/retarding lipolysis, or facilitating digestibility, ultimately depends on its susceptibility to enzymatic degradation in the gastrointestinal tract. In oil-in-water emulsions, lipid droplets are surrounded by interfacial layers, where the emulsifiers stabilize the emulsion and protect the encapsulated compound.

View Article and Find Full Text PDF

Elastomeric surfaces and oil-infused elastic surfaces reveal low ice adhesion, in part because of their deformability. However, these soft surfaces might jeopardize their mechanical durability. In this work, we analyzed the mechanical durability of elastic polydimethylsiloxane (PDMS) surfaces with different balances between elasticity and deicing performances.

View Article and Find Full Text PDF

Hypothesis: Ice adhesion to rigid materials is reduced with low energy surfaces of high receding contact angles. However, their adhesion strength values are above the threshold value to be considered as icephobic materials. Surface deformability is a promising route to further reduce ice adhesion.

View Article and Find Full Text PDF

One of the major applications of Serum Albumins is their use as delivery systems for lipophilic compounds in biomedicine. Their biomedical application is based on the similarity with Human Serum Albumin (HSA), as a fully biocompatible protein. In general, Bovine Serum Albumin (BSA) is treated as comparable to its human homologue and used as a model protein for fundamental studies since it is available in high amounts and well understood.

View Article and Find Full Text PDF

Hypothesis: Characterization of contact angle hysteresis on soft surfaces is sensitive to the measurement protocol and might present adventitious time-dependencies. Contact line dynamics on solid surfaces is altered by the surface chemistry, surface roughness and/or surface elasticity. We observed a "slow" spontaneous relaxation of static water sessile drops placed on elastic surfaces.

View Article and Find Full Text PDF

The use of foams to deliver bioactive agents and drugs is increasing in pharmaceutics. One example is the use of foam as a delivery system for polidocanol (POL) in sclerotherapy, with the addition of bioactive compounds to improve the delivery system being a current subject of study. This work shows the influence of two bioactive additives on the structure and stability of POL foam: hyaluronic acid (HA) and Pluronic-F68 (F68).

View Article and Find Full Text PDF

Hypothesis: Wettability of solid surfaces is mostly probed with sessile drops rather than bubbles because this method is readily followed out. This recurrent use may lead to a misleading connection of certain phenomena to the hydrophobicity/hydrophilicity of materials. For instance, the Cassie-Baxter regime and the wicking effect are generally associated only to hydrophobic and hydrophilic surfaces, respectively.

View Article and Find Full Text PDF

Several ways to produce superhydrophobic metal surfaces are presented in this work. Aluminum was chosen as the metal substrate due to its wide use in industry. The wettability of the produced surface was analyzed by bouncing drop experiments and the topography was analyzed by confocal microscopy.

View Article and Find Full Text PDF

The analysis of wetting properties of superhydrophobic surfaces may be a difficult task due to the restless behavior of drops on this type of surfaces and the limitations of goniometry for high contact angles. A method to validate the performance of superhydrophobic surfaces, rather than standard goniometry, is required. In this work, we used bouncing drop dynamics as a useful tool to predict the water repellency of different superhydrophobic surfaces.

View Article and Find Full Text PDF

Particles adsorbed at liquid interfaces are commonly used to stabilise water-oil Pickering emulsions and water-air foams. The fundamental understanding of the physics of particles adsorbed at water-air and water-oil interfaces is improving significantly due to novel techniques that enable the measurement of the contact angle of individual particles at a given interface. The case of non-aqueous interfaces and emulsions is less studied in the literature.

View Article and Find Full Text PDF

Gold patchy nanoparticles (PPs) were prepared under surfactant-free conditions by functionalization with a binary ligand mixture of polystyrene and poly(ethylene glycol) (PEG) as hydrophobic and hydrophilic ligands, respectively. The interfacial activity of PPs was compared to that of homogeneous hydrophilic nanoparticles (HPs), fully functionalized with PEG, by means of pendant drop tensiometry at water/air and water/decane interfaces. We compared interfacial activities in three different spreading agents: water, water/chloroform, and pure chloroform.

View Article and Find Full Text PDF

The motion of electrically charged particles under crowding conditions and subjected to evaporation-driven capillary flow might be ruled by collective diffusion. The concentration gradient developed inside an evaporating drop of colloidal suspension may reduce by diffusion the number of particles transported toward the contact line by convection. Unlike self-diffusion coefficient, the cooperative diffusion coefficient of interacting particles becomes more pronounced in crowded environments.

View Article and Find Full Text PDF

Inhibition of lipase activity is one of the approaches to reduced fat intake with nutritional prevention promoting healthier diet. The food industry is very interested in the use of natural extracts, hence reducing the side effects of commercial drugs inhibiting lipolysis. In this work we propose a novel methodology to rapidly assess lipolysis/inhibition in a single droplet by interfacial tension and dilatational elasticity.

View Article and Find Full Text PDF

Janus gold nanoparticles (JPs) of ∼4 nm-diameter half functionalized with 1-hexanethiol as a hydrophobic capping ligand exhibit significantly higher interfacial activity, reproducibility and rheological response when the other half is functionalized with 1,2-mercaptopropanediol (JPs-MPD) than with 2-(2-mercaptoethoxy)ethanol (JPs-MEE), both acting as hydrophilic capping ligands. The interfacial pressure measured by pendant drop tensiometry reaches 50 mN m(-1) and 35 mN m(-1) for the JPs-MPD at the water/air and water/decane interface, respectively. At the same area per particle, the JPs-MEE reveal significantly lower interfacial pressure: 15 mN m(-1) and 5 mN m(-1) at the water/air and water/decane interface, respectively.

View Article and Find Full Text PDF

Surface heterogeneity affects the behavior of nanoparticles at liquid interfaces. To gain a deeper understanding on the details of these phenomena, we have measured the interfacial activity and contact angle at water/decane interfaces for three different types of nanoparticles: homogeneous poly(methyl methacrylate) (PMMA), silica functionalized with a capping ligand containing a methacrylate terminal group, and Ag-based Janus colloids with two capping ligands of different hydrophobicity. The interfacial activity was analyzed by pendant drop tensiometry, and the contact angle was measured directly by freeze-fracture shadow-casting cryo-scanning electron microscopy.

View Article and Find Full Text PDF

Since de Gennes coined in 1992 the term Janus particle (JP), there has been a continued effort to develop this field. The purpose of this review is to present the most relevant theoretical and experimental results obtained so far on the surface activity of amphiphilic JPs at fluid interfaces. The surface activity of JPs at fluid-fluid interfaces can be experimentally determined using two different methods: the classical Langmuir balance or the pendant drop tensiometry.

View Article and Find Full Text PDF

Segregation of particles during capillary/convective self-assembly is interesting for self-stratification in colloidal deposits. In evaporating drops containing colloidal particles, the wettability properties of substrate and the sedimentation of particles can affect their accumulation at contact lines. In this work we studied the size segregation and discrimination of charged particles with different densities.

View Article and Find Full Text PDF

Complete understanding of colloidal assembly is still a goal to be reached. In convective assembly deposition, the concentration gradients developed in evaporating drops or reservoirs are usually significant. However, collective diffusion of charge-stabilized particles has been barely explored.

View Article and Find Full Text PDF

Modifying the protein conformation appears to improve the digestibility of proteins in the battle against allergies. However, it is important not to lose the protein functionality in the process. Light pulse technology has been recently tested as an efficient non-thermal process which alters the conformation of proteins while improving their functionality as stabilizers.

View Article and Find Full Text PDF

Introduction: The development of the coaxial double capillary 15 years ago opened up the possibility to undertake accurate desorption and penetration studies of interfacial layers in the pendant drop technique. Drop and bubble methods offer several advantages with respect to other interfacial techniques. They allow a more stringent control of the environmental conditions, use smaller amounts of material and provide a much higher interface/volume ratio than in conventional Langmuir Troughs.

View Article and Find Full Text PDF

Better control of colloidal assembly by convective deposition is particularly helpful in particle templating. However, knowledge of the different factors that can alter colloidal patterning mechanisms is still insufficient. Deposit morphology is strongly ruled by contact line dynamics, but the wettability properties of the substrate can alter it drastically.

View Article and Find Full Text PDF

Complexation of DNA with lipids is currently being developed as an alternative to classical vectors based on viruses. Most of the research to date focuses on cationic lipids owing to their spontaneous complexation with DNA. Nonetheless, recent investigations have revealed that cationic lipids induce a large number of adverse effects on DNA delivery.

View Article and Find Full Text PDF