Am J Physiol Renal Physiol
January 2020
The mechanistic link between obesity and renal failure has been proposed to involve mitochondria reactive oxygen species generation and lipotoxicity. These pathological conditions make mitochondria of particular interest in the regulation of cell function and death by both apoptosis and autophagy. Therefore, this work was undertaken to investigate mitochondria function, autophagy, and apoptosis protein markers in the kidney from a rat model of intra-abdominal obesity and renal damage induced by a high-sucrose diet.
View Article and Find Full Text PDFOxid Med Cell Longev
January 2019
In metabolic diseases, the increased reactive oxygen species (ROS) represents one of the pathogenic mechanisms for vascular disease probably by promoting vascular smooth muscle cell (SMC) proliferation that contributes to the development of arterial remodeling and stenosis, hypertension, and atherosclerosis. Therefore, this work was undertaken to evaluate the participation of ROS from NADPH oxidase and mitochondria in the proliferation of SMCs from the aorta in a model of metabolic syndrome induced by sucrose feeding in rats. After 24 weeks, sucrose-fed (SF) rats develop hypertension, intra-abdominal obesity, hyperinsulinemia, and hyperleptinemia.
View Article and Find Full Text PDFMetabolic diseases such as obesity, metabolic syndrome, and type II diabetes are often characterized by increased reactive oxygen species (ROS) generation in mitochondrial respiratory complexes, associated with fat accumulation in cardiomyocytes, skeletal muscle, and hepatocytes. Several rodents studies showed that lipid accumulation in cardiac myocytes produces lipotoxicity that causes apoptosis and leads to heart failure, a dynamic pathological process. Meanwhile, several tissues including cardiac tissue develop an adaptive mechanism against oxidative stress and lipotoxicity by overexpressing uncoupling proteins (UCPs), specific mitochondrial membrane proteins.
View Article and Find Full Text PDF