Ionic liquids are composed of an organic cation and a highly delocalized perfluorinated anion, which remain tight to each other and neutral across the extended liquid framework. Here we show that -alkanes in millimolar amounts enable a sufficient ion charge separation to release the innate acidity of the ionic liquid and catalyze the industrially relevant alkylation of phenol, after generating homogeneous, self-stabilized, and surfactant-free microdroplets (1-5 μm). This extremely mild and simple protocol circumvents any external additive or potential ionic liquid degradation and can be extended to water, which spontaneously generates microdroplets (.
View Article and Find Full Text PDFThe carbonyl-olefin metathesis reaction has experienced significant advances in the last seven years with new catalysts and reaction protocols. However, most of these procedures involve soluble catalysts for intramolecular reactions in batch. Herein, we show that recoverable, inexpensive, easy to handle, non-toxic, and widely available simple solid acids, such as the aluminosilicate montmorillonite, can catalyze the intermolecular carbonyl-olefin metathesis of aromatic ketones and aldehydes with vinyl ethers in-flow, to give alkenes with complete trans stereoselectivity on multi-gram scale and high yields.
View Article and Find Full Text PDFGroup 15 elements in zero oxidation state (P, As, Sb and Bi), also called pnictogens, are rarely used in catalysis due to the difficulties associated in preparing well-structured and stable materials. Here, we report on the synthesis of highly exfoliated, few layer 2D phosphorene and antimonene in zero oxidation state, suspended in an ionic liquid, with the native atoms ready to interact with external reagents while avoiding aerobic or aqueous decomposition pathways, and on their use as efficient catalysts for the alkylation of nucleophiles with esters. The few layer pnictogen material circumvents the extremely harsh reaction conditions associated to previous superacid-catalyzed alkylations, by enabling an alternative mechanism on surface, protected from the water and air by the ionic liquid.
View Article and Find Full Text PDFThe chemical bulk reductive covalent functionalization of thin-layer black phosphorus (BP) using BP intercalation compounds has been developed. Through effective reductive activation, covalent functionalization of the charged BP by reaction with organic alkyl halides is achieved. Functionalization was extensively demonstrated by means of several spectroscopic techniques and DFT calculations; the products showed higher functionalization degrees than those obtained by neutral routes.
View Article and Find Full Text PDFThe reactive nature of carbenes can be modulated, and ultimately reversed, by receiving additional electron density from a metal. Here, it is shown that Au nanoparticles (NPs) generate an electron-rich carbene on surface after transferring electron density to the carbonyl group of an in situ activated diazoacetate, as assessed by Fourier transformed infrared (FT-IR) spectroscopy, magic angle spinning nuclear magnetic resonance (MAS NMR), and Raman spectroscopy. Density functional theory (DFT) calculations support the observed experimental values and unveil the participation of at least three different Au atoms during carbene stabilization.
View Article and Find Full Text PDF