Seeds are specialized plant organs that carry, nurture, and protect plant offspring. Developmental coordination between the three genetically distinct seed tissues (the embryo, endosperm, and seed coat) is crucial for seed viability. In this study, we explore the relationship between the TFs AtHB25 and ICE1.
View Article and Find Full Text PDFCapsicum (pepper) is known for its poor seed germination, particularly seed longevity is usually much shorter than other Solanaceae. However, the molecular mechanisms involved are mostly unknown in these species. The present study examines the differences in seed longevity among Capsicum species and varietal types.
View Article and Find Full Text PDFIncreasing nutrient use efficiency of fertilizers is one of the major challenges to improve crop yields and minimize environmental impacts. This work compared the efficacy of a new ecological polymer-coated urea fertilizer and a slow release urea-based traditional fertilizer. Reductions in the N doses of the polymer-coated fertilizer were tested.
View Article and Find Full Text PDFFertilizer-use efficiency is one of the most critical concerns in rice cultivation to reduce N losses, increase yields, and improve crop management. The effects of a new polymeric-coated controlled-release fertilizer (CRF) were compared to those of other slow-release and traditional fertilizers in a microscale experiment, which was carried out in cuvettes under partly controlled ambient conditions, and a large-scale field experiment. To evaluate the fertilizer's efficiency, nitrogen and water-use efficiency were calculated using the measurement of different photosynthetic and crop yield parameters.
View Article and Find Full Text PDFBackground: Three gametoclonal plants of Citrus clementina Hort. ex Tan., cv.
View Article and Find Full Text PDFGenes involved in the mechanisms of plant responses to salt stress may be used as biotechnological tools for the genetic improvement of salt tolerance in crop plants. This would help alleviate the increasing problem of salinization of lands cultivated under irrigation in arid and semi-arid regions. We have isolated a novel halotolerance gene from Arabidopsis thaliana, A.
View Article and Find Full Text PDFSearching for novel targets of salt toxicity in eukaryotic cells, we have screened an Arabidopsis thaliana cDNA library to isolate genes conferring increased tolerance to salt stress when expressed in the yeast Saccharomyces cerevisiae. Here we show that expression of the 'alternating arginine-rich' (or RS) domains of two different SR-like, putative splicing proteins from Arabidopsis allows yeast cells to tolerate higher lithium and sodium concentrations. Protection against salt stress appears to require the in vivo phosphorylation of these plant polypeptides, since the yeast SR protein kinase Sky1p, which was able to phosphorylate in vitro at least one of them, also proved to be essential for the observed salt tolerance phenotype.
View Article and Find Full Text PDF