Publications by authors named "Miguel Angel Garcia"

In the pursuit of enhancing cancer treatment efficacy while minimizing side effects, near-infrared (NIR) photothermal therapy (PTT) has emerged as a promising approach. By using photothermally active nanomaterials, PTT enables localized hyperthermia, effectively eliminating cancer cells with minimal invasiveness and toxicity. Among these nanomaterials, gold nanostars (AuNS) stand out due to their tunable plasmon resonance and efficient light absorption.

View Article and Find Full Text PDF

Background Aims: There are currently no effective anti-viral treatments for coronavirus disease 2019 (COVID-19)-hospitalized patients with hypoxemia. Lymphopenia is a biomarker of disease severity usually present in patients who are hospitalized. Approaches to increasing lymphocytes exerting an anti-viral effect must be considered to treat these patients.

View Article and Find Full Text PDF

Temperature plays a critical role in regulating body mechanisms and indicating inflammatory processes. Local temperature increments above 42 °C are shown to kill cancer cells in tumorous tissue, leading to the development of nanoparticle-mediated thermo-therapeutic strategies for fighting oncological diseases. Remarkably, these therapeutic effects can occur without macroscopic temperature rise, suggesting localized nanoparticle heating, and minimizing side effects on healthy tissues.

View Article and Find Full Text PDF

The saving and re-use of energy has acquired great relevance in recent years, being of great importance in the automotive sector. In the literature, it is possible to find different proposals for energy-harvesting damper systems (EHSA)-the electromagnetic damper being a highly recurrent but still poorly defined proposal. This article specifically focuses on studying the concept and feasibility of an electromagnetic suspension system that is capable of recovering energy, using a damper formed by permanent magnets and a system of coils that collect the electromotive force generated by the variation of the magnetic field.

View Article and Find Full Text PDF

Nanoparticle-mediated thermal treatments have demonstrated high efficacy and versatility as a local anticancer strategy beyond traditional global hyperthermia. Nanoparticles act as heating generators that can trigger therapeutic responses at both the cell and tissue level. In some cases, treatment happens in the absence of a global temperature rise, damaging the tumor cells even more selectively than other nanotherapeutic strategies.

View Article and Find Full Text PDF

Phylogenetic relationships of and within non-photosynthetic parasitic lineages are notoriously poorly known, which negatively affects our understanding of parasitic plants. This is also the case for Cistanche (Orobanchaceae), an Old World genus with about two dozen species, whose relationships have not yet been addressed using molecular phylogenetic approaches. Here we infer phylogenetic relationships within the genus, employing a taxonomically and geographically broad sampling covering all previously distinguished infrageneric groups and most of the currently recognized species.

View Article and Find Full Text PDF

The genome size varies widely among angiosperms but only a few clades present huge variation at a low phylogenetic level. Among diploid species of the genus Cuscuta the genome size increased enormously in at least two independent lineages: in species of subgenus Monogynella and in at least one species (C. indecora) of the subgenus Grammica.

View Article and Find Full Text PDF

In this paper, a novel edge-based active contour method is proposed based on the difference of Gaussians (DoG) to segment intensity inhomogeneous images. DoG is known as a feature enhancement tool, which can enhance the edges of an image. However, in the proposed energy functional it is used as an edge-indicator parameter, which acts like a balloon force during the level-set curve evolution process.

View Article and Find Full Text PDF

This paper presents a region-based active contour method for the segmentation of intensity inhomogeneous images using an energy functional based on local and global fitted images. A square image fitted model is defined by using both local and global fitted differences. Moreover, local and global signed pressure force functions are introduced in the solution of the energy functional to stabilize the gradient descent flow.

View Article and Find Full Text PDF

The controlled assembly of building blocks to achieve new nanostructured materials with defined properties at different length scales through rational design is the basis and future of bottom-up nanofabrication. This work describes the assembly of the idealized protein building block, the consensus tetratricopeptide repeat (CTPR), into monolayers by oriented immobilization of the blocks. The selectivity of thiol-gold interaction for an oriented immobilization has been verified by comparing a non-thiolated protein building block.

View Article and Find Full Text PDF

The limited depth-of-field of some cameras prevents them from capturing perfectly focused images when the imaged scene covers a large distance range. In order to compensate for this problem, image fusion has been exploited for combining images captured with different camera settings, thus yielding a higher quality all-in-focus image. Since most current approaches for image fusion rely on maximizing the spatial frequency of the composed image, the fusion process is sensitive to noise.

View Article and Find Full Text PDF

In the present work, the characterization of cobalt-porous silicon (Co-PSi) hybrid systems is performed by a combination of magnetic, spectroscopic, and structural techniques. The Co-PSi structures are composed by a columnar matrix of PSi with Co nanoparticles embedded inside, as determined by Transmission Electron Microscopy (TEM). The oxidation state, crystalline structure, and magnetic behavior are determined by X-Ray Absorption Spectroscopy (XAS) and Alternating Gradient Field Magnetometry (AGFM).

View Article and Find Full Text PDF

This paper proposes two alternative formulations to reduce the high computational complexity of tensor voting, a robust perceptual grouping technique used to extract salient information from noisy data. The first scheme consists of numerical approximations of the votes, which have been derived from an in-depth analysis of the plate and ball voting processes. The second scheme simplifies the formulation while keeping the same perceptual meaning of the original tensor voting: The stick tensor voting and the stick component of the plate tensor voting must reinforce surfaceness, the plate components of both the plate and ball tensor voting must boost curveness, whereas junctionness must be strengthened by the ball component of the ball tensor voting.

View Article and Find Full Text PDF

A colloidal nonaqueous approach to semiconductor-magnetic hybrid nanocrystals (HNCs) with selectable heterodimer topologies and tunable geometric parameters is demonstrated. Brookite TiO(2) nanorods, distinguished by a curved shape-tapered profile with richly faceted terminations, are exploited as substrate seeds onto which a single spherical domain of inverse spinel iron oxide can be epitaxially grown at either one apex or any location along their longitudinal sidewalls in a hot surfactant environment. The topologically controlled arrangement of the component material lattices, the crystallographic relationships holding between them, and strain distribution across individual heterostructures have been studied by combining X-ray diffraction and absorption techniques with high-resolution transmission electron microscopy investigations.

View Article and Find Full Text PDF

A voluntary collaborative exercise aiming at the mitochondrial analysis of canine biological samples was carried out in 2006-2008 by the Non-Human Forensic Genetics Commission of the Spanish and Portuguese Working Group (GEP) of the International Society for Forensic Genetics (ISFG). The participating laboratories were asked to sequence two dog samples (one bloodstain and one hair sample) for the mitochondrial D-loop region comprised between positions 15,372 and 16,083 using suggested primers and PCR conditions, and to compare their results against a reference sequence. Twenty-one participating laboratories reported a total of 67.

View Article and Find Full Text PDF

A flexible colloidal seeded-growth strategy has been developed to synthesize all-oxide semiconductor/magnetic hybrid nanocrystals (HNCs) in various topological arrangements, for which the dimensions of the constituent material domains can be controlled independently over a wide range. Our approach relies on driving preferential heterogeneous nucleation and growth of spinel cubic iron oxide (IO) domains onto brookite TiO2 nanorods (b-TiO2) with tailored geometric parameters, by means of time-programmed delivery of organometallic precursors into a suitable TiO2-loaded surfactant environment. The b-TiO2 seeds exhibit size-dependent accessibility towards IO under diffusion-controlled growth regime, which allows attainment of HNCs individually made of a single b-TiO2 section functionalized with either one or multiple nearly spherical IO domains.

View Article and Find Full Text PDF

Background And Objective: Our objectives were to detect asymptomatic cases involved in an outbreak of hepatitis B, to assess the seroprevalence of hepatitis B (HB) in orienteers and to establish recommendations.

Patients And Method: One hundred sixteen orienteers who had competed in the categories involved in the previous outbreak as well as a stratified random sample of 166 of the remaining orienteers in other competition categories were included in a cross-sectional serological prevalence study. HB surface antigen (anti-HBs); total antibody to HB core antigen (total anti-HBc); HB surface antigen (Ag HBs); and antibody IgM to HB core antigen (anti-HBcIgM) along with the history of vaccination for hepatitis B were analyzed.

View Article and Find Full Text PDF

A colloidal seeded-growth strategy, relying on time-programmed delivery of selected stabilizing surfactants, has been developed to synthesize bimagnetic hybrid nanocrystals (HNCs) that consist of a single-crystal tetrapod-shaped skeleton of ferrimagnetic (FiM) iron oxide functionalized with multiple polycrystalline spherical domains of ferromagnetic (FM) Co. Due to the direct bonding interfaces formed between the two materials at the relevant junction regions, the HNCs exhibit FiM-FM exchange coupling, which transcribes into a rich scenario of significantly modified properties (not otherwise achievable with any of the single components or with their physical mixtures), including higher saturation magnetization and coercitivity values, exchange biasing, and enhanced thermal stability due to induced extra anisotropy. The availability of these new types of HNCs suggests that development of appropriate synthetic tools for arranging distinct material domains in predetermined spatial arrangements could lead to a more rational design of nanoheterostructures potentially exploitable as active elements in future generations of magnetic recording devices.

View Article and Find Full Text PDF

Objective: To evaluate the adherence to, and safety of three chemoprophylaxis regimens for latent tuberculosis (TB) infection in HIV-infected patients with a positive tuberculin skin test.

Patients And Methods: A randomized, comparative, open clinical assay was carried out in 316 HIV-infected patients in 12 Spanish hospitals. Patients were randomly assigned to one of three regimens, 108 to isoniazid for six months (6H), 103 to rifampin and isoniazid for three months (3RH), and 105 to rifampin and pyrazinamide for two months (2RZ).

View Article and Find Full Text PDF

Colloidal semiconductor-magnetic hybrid nanocrystals with topologically controlled composition are fabricated by heterogeneous nucleation of spherical epsilon-Co domains onto anatase TiO2 nanorods. The latter can be selectively decorated at either their tips or at multiple locations along their longitudinal sidewalls, forming lattice-matched heterointerfaces regardless of the metal deposition sites. The possibility of switching between either heterostructure growth modes arises from the facet-dependent chemical reactivity of the oxide seeds, which is governed mainly by selective adhesion of the surfactants rather than by small differences in misfit-induced interfacial strain at the relevant junction points.

View Article and Find Full Text PDF

Tetrapod-shaped maghemite nanocrystals are synthesized by manipulating the decomposition of iron pentacarbonyl in a ternary surfactant mixture under mild thermal conditions. Adjustment of the reaction parameters allows for the systematic tuning of both the width and the length of the tetrapod arms, which grow preferentially along the 111 easy axis direction. Such degree of control leads to modulation of the magnetic behavior of the nanocrystals, which evolves systematically as their surface magnetization phase and shape anisotropy are progressively increased.

View Article and Find Full Text PDF

Bipolar microtubule attachment is central to genome stability. Here, we investigate the mitotic role of the fission yeast EB1 homologue Mal3. Mal3 shows dynamic inward movement along the spindle, initial emergence at the spindle pole body (SPB) and translocation towards the equatorial plane, followed by sudden disappearance.

View Article and Find Full Text PDF