This research describes the functionalization of polymer-matrix-trapping porphyrins, considering that the transcendental properties of meso-substituted porphyrins, such as optical and chemical stability, combined with the strength of the polymers, can produce photoactive advanced polymeric networks. Polystyrene (PS) and O,O´-bis-(2-aminopropyl)-polyethyleneglycol-300 (2NHpeg300, APEG), or their combination, were used to confine the meso-substituted porphyrin species 5,10,15,20-tetrakis(4'-carboxy-1,1'-biphenyl-4-yl)porphyrin and 5,10,15,20-tetrakis((pyridin-4-yl)phenyl)porphyrin. The samples were characterized by Fourier-transform infrared (FTIR), X-ray diffraction (XRD), ultraviolet-visible (UV-Vis) and fluorescence spectroscopies.
View Article and Find Full Text PDFThe present work reports the changes for the mesoporous materials SBA-15 and KIT-6 associated with the structural, textural, and chemical properties when they are subjected to thermo-alkaline treatment. Despite the fact that the silica supports have not a strong affinity for CO adsorption, the adsorption enthalpy profiles (ΔH) reported that the substrates subjected to the thermo-alkaline treatment (S15H and K6H) have a greater energetic affinity towards CO capture if compared to the precursory solids (S15 and K6). The ΔH is - 26.
View Article and Find Full Text PDFSpecial preparation of Santa Barbara Amorphous (SBA)-15, mesoporous silica with highly hexagonal ordered, these materials have been carried out for creating adsorbents exhibiting an enhanced and partially selective adsorption toward CO₂. This creation starts from an adequate conditioning of the silica surface, via a thermo-alkaline treatment to increase the population of silanol species on it. CO₂ adsorption is only reasonably achieved when the SiO₂ surface becomes aminated after put in contact with a solution of an amino alkoxide compound in the right solvent.
View Article and Find Full Text PDF