Objective: To evaluate machine learning models' performance in predicting acute pancreatitis severity using early-stage variables while excluding laboratory and imaging tests.
Summary Background Data: Severe acute pancreatitis (SAP) affects approximately 20% of acute pancreatitis (AP) patients and is associated with high mortality rates. Accurate early prediction of SAP and in-hospital mortality is crucial for effective management.
Background: The use of livers with significant steatosis is associated with worse transplantation outcomes. Brain death donor liver acceptance is mostly based on subjective surgeon assessment of liver appearance, since steatotic livers acquire a yellowish tone. The aim of this study was to develop a rapid, robust, accurate, and cost-effective method to assess liver steatosis.
View Article and Find Full Text PDFHepatic steatosis, characterized by excess fat in the liver, is the main reason for discarding livers intended for transplantation due to its association with increased postoperative complications. The current gold standard for evaluating hepatic steatosis is liver biopsy, which, despite its accuracy, is invasive, costly, slow, and not always feasible during liver procurement. Consequently, surgeons often rely on subjective visual assessments based on the liver's colour and texture, which are prone to errors and heavily depend on the surgeon's experience.
View Article and Find Full Text PDF