Publications by authors named "Miguel A Zavala"

Increasing water stress is emerging as a global phenomenon, and is anticipated to have a marked impact on forest function. The role of tree functional strategies is pivotal in regulating forest fitness and their ability to cope with water stress. However, how the functional strategies found at the tree or species level scale up to characterise forest communities and their variation across regions is not yet well-established.

View Article and Find Full Text PDF

Although climate change is expected to drive tree species toward colder and wetter regions of their distribution, broadscale empirical evidence is lacking. One possibility is that past and present human activities in forests obscure or alter the effects of climate. Here, using data from more than two million monitored trees from 73 widely distributed species, we quantify changes in tree species density within their climatic niches across Northern Hemisphere forests.

View Article and Find Full Text PDF

The emergence of alternative stable states in forest systems has significant implications for the functioning and structure of the terrestrial biosphere, yet empirical evidence remains scarce. Here, we combine global forest biodiversity observations and simulations to test for alternative stable states in the presence of evergreen and deciduous forest types. We reveal a bimodal distribution of forest leaf types across temperate regions of the Northern Hemisphere that cannot be explained by the environment alone, suggesting signatures of alternative forest states.

View Article and Find Full Text PDF

Forest ecosystems with long-lasting human imprints can emerge worldwide as outcomes of land-use cessation. However, the interaction of these anthropogenic legacies with climate change impacts on forests is not well understood. Here, we set out how anthropogenic land-use legacies that persist in forest properties, following alterations in forest distribution, structure, and composition, can interact with climate change stressors.

View Article and Find Full Text PDF

With climate change, natural disturbances such as storm or fire are reshuffled, inducing pervasive shifts in forest dynamics. To predict how it will impact forest structure and composition, it is crucial to understand how tree species differ in their sensitivity to disturbances. In this study, we investigated how functional traits and species mean climate affect their sensitivity to disturbances while controlling for tree size and stand structure.

View Article and Find Full Text PDF

Previous attempts to quantify tree abundance at global scale have largely neglected the role of local competition in modulating the influence of climate and soils on tree density. Here, we evaluated whether mean tree size in the world's natural forests alters the effect of global productivity on tree density. In doing so, we gathered a vast set of forest inventories including >3000 sampling plots from 23 well-conserved areas worldwide to encompass (as much as possible) the main forest biomes on Earth.

View Article and Find Full Text PDF

Data capturing multiple axes of tree size and shape, such as a tree's stem diameter, height and crown size, underpin a wide range of ecological research-from developing and testing theory on forest structure and dynamics, to estimating forest carbon stocks and their uncertainties, and integrating remote sensing imagery into forest monitoring programmes. However, these data can be surprisingly hard to come by, particularly for certain regions of the world and for specific taxonomic groups, posing a real barrier to progress in these fields. To overcome this challenge, we developed the Tallo database, a collection of 498,838 georeferenced and taxonomically standardized records of individual trees for which stem diameter, height and/or crown radius have been measured.

View Article and Find Full Text PDF

Tree-ring data has been widely used to inform about tree growth responses to drought at the individual scale, but less is known about how tree growth sensitivity to drought scales up driving changes in forest dynamics. Here, we related tree-ring growth chronologies and stand-level forest changes in basal area from two independent data sets to test if tree-ring responses to drought match stand forest dynamics (stand basal area growth, ingrowth, and mortality). We assessed if tree growth and changes in forest basal area covary as a function of spatial scale and tree taxa (gymnosperm or angiosperm).

View Article and Find Full Text PDF

Unlabelled: Legacies of past climate conditions and historical management govern forest productivity and tree growth. Understanding how these processes interact and the timescales over which they influence tree growth is critical to assess forest vulnerability to climate change. Yet, few studies address this issue, likely because integrated long-term records of both growth and forest management are uncommon.

View Article and Find Full Text PDF

Forest dieback processes linked to drought are expected to increase due to climate warming. Remotely sensed data offer several advantages over common field monitoring methods such as the ability to observe large areas on a systematic basis and monitoring their changes, making them increasingly used to assess changes in forest health. Here we aim to use a combined approximation of fieldwork and remote sensing to explore possible links between forest dieback and land surface phenological and trend variables derived from long Landsat time series.

View Article and Find Full Text PDF

More tree species can increase the carbon storage capacity of forests (here referred to as the more species hypothesis) through increased tree productivity and tree abundance resulting from complementarity, but they can also be the consequence of increased tree abundance through increased available energy (more individuals hypothesis). To test these two contrasting hypotheses, we analyse the most plausible pathways in the richness-abundance relationship and its stability along global climatic gradients. We show that positive effect of species richness on tree abundance only prevails in eight of the twenty-three forest regions considered in this study.

View Article and Find Full Text PDF

Climate and forest structure are considered major drivers of forest demography and productivity. However, recent evidence suggests that the relationships between climate and tree growth are generally non-stationary (i.e.

View Article and Find Full Text PDF

For decades, ecologists have investigated the effects of tree species diversity on tree productivity at different scales and with different approaches ranging from observational to experimental study designs. Using data from five European national forest inventories (16,773 plots), six tree species diversity experiments (584 plots), and six networks of comparative plots (169 plots), we tested whether tree species growth responses to species mixing are consistent and therefore transferrable between those different research approaches. Our results confirm the general positive effect of tree species mixing on species growth (16% on average) but we found no consistency in species-specific responses to mixing between any of the three approaches, even after restricting comparisons to only those plots that shared similar mixtures compositions and forest types.

View Article and Find Full Text PDF

Climate change can impair ecosystem functions and services in extensive dry forests worldwide. However, attribution of climate change impacts on tree growth and forest productivity is challenging due to multiple inter-annual patterns of climatic variability associated with atmospheric and oceanic circulations. Moreover, growth responses to rising atmospheric CO, namely carbon fertilization, as well as size ontogenetic changes can obscure the climate change signature as well.

View Article and Find Full Text PDF

Drought and frosts are major determinants of plant functioning and distribution. Both stresses can cause xylem embolism and foliage damage. The objective of this study was to analyse if the distribution of six common pine species along latitudinal and altitudinal gradients in Europe is related to their interspecific differences in frost tolerance and to the physiological mechanisms underlying species-specific frost tolerance.

View Article and Find Full Text PDF

The North Atlantic Oscillation (NAO) depicts annual and decadal oscillatory modes of variability responsible for dry spells over the European continent. The NAO therefore holds a great potential to evaluate the role, as carbon sinks, of water-limited forests under climate change. However, uncertainties related to inconsistent responses of long-term forest productivity to NAO have so far hampered firm conclusions on its impacts.

View Article and Find Full Text PDF

Humans require multiple services from ecosystems, but it is largely unknown whether trade-offs between ecosystem functions prevent the realisation of high ecosystem multifunctionality across spatial scales. Here, we combined a comprehensive dataset (28 ecosystem functions measured on 209 forest plots) with a forest inventory dataset (105,316 plots) to extrapolate and map relationships between various ecosystem multifunctionality measures across Europe. These multifunctionality measures reflected different management objectives, related to timber production, climate regulation and biodiversity conservation/recreation.

View Article and Find Full Text PDF
Article Synopsis
  • Climate change is affecting Mediterranean forests, leading to warmer temperatures and increased drought, which threaten forest productivity and ecosystem functions as carbon reservoirs.
  • While warmer temperatures can extend the growing season and boost growth, summer droughts primarily reduce productivity and can lead to tree decline and increased mortality.
  • This study analyzes historical data on Scots pine populations in Central Spain, suggesting that warm winters benefit tree growth, while drought conditions worsen outcomes, especially when competition for resources is high; management practices that reduce stand volume may help mitigate these impacts.
View Article and Find Full Text PDF
Article Synopsis
  • Intense droughts and rising temperatures threaten European forests, altering their functional composition and species traits.
  • The study aims to quantify these changes from the 1980s to 2000s, assess the impact of climate change versus forest development, and explore tree mortality's role in functional shifts.
  • Findings reveal that climate change, particularly increased heat and drought, generally promotes angiosperm traits, with forest evolution showing expected patterns in species succession over time.
View Article and Find Full Text PDF

Plant species aboveground allometry can be viewed as a functional trait that reflects the evolutionary trade-off between above- and belowground resources. In forest trees, allometry is related to productivity and resilience in different environments, and it is tightly connected with a compromise between efficiency-safety and competitive ability. A better understanding on how this trait varies within and across species is critical to determine the potential of a species/population to perform along environmental gradients.

View Article and Find Full Text PDF

Neglecting tree size and stand structure dynamics might bias the interpretation of the diversity-productivity relationship in forests. Here we show evidence that complementarity is contingent on tree size across large-scale climatic gradients in Europe. We compiled growth data of the 14 most dominant tree species in 32,628 permanent plots covering boreal, temperate and Mediterranean forest biomes.

View Article and Find Full Text PDF

There is considerable evidence that biodiversity promotes multiple ecosystem functions (multifunctionality), thus ensuring the delivery of ecosystem services important for human well-being. However, the mechanisms underlying this relationship are poorly understood, especially in natural ecosystems. We develop a novel approach to partition biodiversity effects on multifunctionality into three mechanisms and apply this to European forest data.

View Article and Find Full Text PDF

Many experiments have shown that local biodiversity loss impairs the ability of ecosystems to maintain multiple ecosystem functions at high levels (multifunctionality). In contrast, the role of biodiversity in driving ecosystem multifunctionality at landscape scales remains unresolved. We used a comprehensive pan-European dataset, including 16 ecosystem functions measured in 209 forest plots across six European countries, and performed simulations to investigate how local plot-scale richness of tree species (α-diversity) and their turnover between plots (β-diversity) are related to landscape-scale multifunctionality.

View Article and Find Full Text PDF