Genome-wide association studies have identified thousands of loci associated with common diseases and traits. However, a large fraction of heritability remains unexplained. Epigenetic modifications, such as the observed in DNA methylation have been proposed as a mechanism of intergenerational inheritance.
View Article and Find Full Text PDFThe COVID-19 pandemic posed a global health crisis, with new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants weakening vaccine-driven protection. Trained immunity could help tackle COVID-19 disease. Our objective was to analyze whether heat-killed (hkMm), an environmental mycobacterium, induces trained immunity and confers protection against SARS-CoV-2 infection.
View Article and Find Full Text PDFUnlabelled: Although somatic mutations in colorectal cancer are well characterized, little is known about the accumulation of cancer mutations in the normal colon before cancer. Here, we have developed and applied an ultrasensitive, single-molecule mutational test based on CRISPR-DS technology, which enables mutation detection at extremely low frequency (<0.001) in normal colon from patients with and without colorectal cancer.
View Article and Find Full Text PDFIntroduction: Up to 25% of acetabular fractures have poor functional outcomes in short-term follow-up. The aim of our study is to analyze predictors related to poor outcome in surgically treated acetabular fractures. Damage to the femoral head cartilage and poor fracture reduction has been reported as predictors to total hip arthroplasty (THA).
View Article and Find Full Text PDFGain insight about the role of DNA methylation in the malignant growth of colon cancer. Methylation and gene expression from 90 adjacent-tumor paired tissues and 48 healthy tissues were analyzed. Tumor genes whose change in expression was explained by changes in methylation were identified using linear models adjusted for tumor stromal content.
View Article and Find Full Text PDFHistone deacetylase 11 (HDAC11) is the latest identified member of the histone deacetylase family of enzymes. It is highly expressed in brain, heart, testis, kidney, and skeletal muscle, although its role in these tissues is poorly understood. Here, we investigate for the first time the consequences of HDAC11 genetic impairment on skeletal muscle regeneration, a process principally dependent on its resident stem cells (satellite cells) in coordination with infiltrating immune cells and stromal cells.
View Article and Find Full Text PDFSkeletal muscle is the largest tissue in mammalian organisms and is a key determinant of basal metabolic rate and whole-body energy metabolism. Histone deacetylase 11 (HDAC11) is the only member of the class IV subfamily of HDACs, and it is highly expressed in skeletal muscle, but its role in skeletal muscle physiology has never been investigated. Here, we describe for the first time the consequences of HDAC11 genetic deficiency in skeletal muscle, which results in the improvement of muscle function enhancing fatigue resistance and muscle strength.
View Article and Find Full Text PDFAlu repeats constitute a major fraction of human genome and for a small subset of them a role in gene regulation has been described. The number of studies focused on the functional characterization of particular Alu elements is very limited. Most Alu elements are DNA methylated and then assumed to lie in repressed chromatin domains.
View Article and Find Full Text PDFWe addressed the precursor role of aging-like spontaneous promoter DNA hypermethylation in initiating tumorigenesis. Using mouse colon-derived organoids, we show that promoter hypermethylation spontaneously arises in cells mimicking the human aging-like phenotype. The silenced genes activate the Wnt pathway, causing a stem-like state and differentiation defects.
View Article and Find Full Text PDFBackground: Colorectal cancer (CRC) is the second most common cause of cancer death worldwide. It is broadly described that cyclooxygenase-2 (COX-2) is mainly overexpressed in CRC but less is known regarding post-translational modifications of this enzyme that may regulate its activity, intracellular localization and stability. Since metabolic and proteomic profile analysis is essential for cancer prognosis and diagnosis, our hypothesis is that the analysis of correlations between these specific parameters and COX-2 state in tumors of a high number of CRC patients could be useful for the understanding of the basis of this cancer in humans.
View Article and Find Full Text PDFBackground: Papillary thyroid cancer (PTC) is the most common type of thyroid cancer. Unlike most cancers, its incidence has dramatically increased in the last decades mainly due to increased diagnosis of indolent PTCs. Adequate risk stratification is crucial to avoid the over-treatment of low-risk patients, as well as the under-treatment of high-risk patients, but the currently available markers are still insufficient.
View Article and Find Full Text PDFThe Cancer Genome Atlas (TCGA) epigenome data includes the DNA methylation status of tumor and normal tissues of large cohorts for dozens of cancer types. Due to the moderately large data sizes, retrieving and analyzing them requires basic programming skills. Simple data browsing (e.
View Article and Find Full Text PDFContext: Global DNA hypomethylation is a major event for the development and progression of cancer, although the significance in thyroid cancer remains unclear. Therefore, we aimed to investigate its role in thyroid cancer progression and its potential as a prognostic marker.
Methods: Global hypomethylation of Alu repeats was used as a surrogate marker for DNA global hypomethylation, and was assessed using the Quantification of Unmethylated Alu technique.
Adipose tissue (AT) has a central role in obesity-related metabolic imbalance through the dysregulated production of cytokines and adipokines. In addition to its known risk for cardiovascular disease and diabetes, obesity is also a major risk for cancer. We investigated the impact of obesity for the expression of survivin, an antiapoptotic protein upregulated by adipokines and a diagnostic biomarker of tumor onset and recurrence.
View Article and Find Full Text PDFSummary: Chainy is a cross-platform web tool providing systematic pipelines and steady criteria to process real-time PCR data, including the calculation of efficiencies from raw data by kinetic methods, evaluation of the suitability of multiple references, standardized normalization using one or more references, and group-wise relative quantification statistical testing. We illustrate the utility of Chainy for differential expression and chromatin immunoprecipitation enrichment (ChIP-QPCR) analysis.
Availability And Implementation: Chainy is open source and freely available at http://maplab.
Background: Genomic datasets accompanying scientific publications show a surprisingly high rate of gene name corruption. This error is generated when files and tables are imported into Microsoft Excel and certain gene symbols are automatically converted into dates.
Results: We have developed Truke, a fexible Web tool to detect, tag and fix, if possible, such misconversions.
Cancer cells exhibit multiple epigenetic changes with prominent local DNA hypermethylation and widespread hypomethylation affecting large chromosomal domains. Epigenome studies often disregard the study of repeat elements owing to technical complexity and their undefined role in genome regulation. We have developed NSUMA (Next-generation Sequencing of UnMethylated Alu), a cost-effective approach allowing the unambiguous interrogation of DNA methylation in more than 130,000 individual Alu elements, the most abundant retrotransposon in the human genome.
View Article and Find Full Text PDFBackground: Factors that impede closed reduction in intertrochanteric fractures remain unknown. This study was designed with the aim of establishing radiological variables that can predict an open reduction when nailing those type of fractures.
Materials And Methods: Observational prospective study carried out between March 2013 and March 2015.
Brief Funct Genomics
November 2016
DNA methylation is an essential epigenetic modification for mammalian development and is crucial for the establishment and maintenance of cellular identity. Traditionally, DNA methylation has been considered as a permanent repressive epigenetic mark. However, the application of genome-wide approaches has allowed the analysis of DNA methylation in different genomic contexts, revealing a more dynamic regulation than originally thought, as active DNA methylation and demethylation occur during cell fate commitment and terminal differentiation.
View Article and Find Full Text PDFBackground: Skeletal muscle stem cells enable the formation, growth, maintenance, and regeneration of skeletal muscle throughout life. The regeneration process is compromised in several pathological conditions, and muscle progenitors derived from pluripotent stem cells have been suggested as a potential therapeutic source for tissue replacement. DNA methylation is an important epigenetic mechanism in the setting and maintenance of cellular identity, but its role in stem cell determination towards the myogenic lineage is unknown.
View Article and Find Full Text PDFHypomethylation of DNA is a hallmark of cancer and its analysis as tumor biomarker has been proposed, but its determination in clinical settings is hampered by lack of standardized methodologies. Here, we present QUAlu (Quantification of Unmethylated Alu), a new technique to estimate the Percentage of UnMethylated Alu (PUMA) as a surrogate for global hypomethylation. QUAlu consists in the measurement by qPCR of Alu repeats after digestion of genomic DNA with isoschizomers with differential sensitivity to DNA methylation.
View Article and Find Full Text PDFAlu elements are the most abundant retrotransposons in the human genome with more than one million copies. Alu repeats have been reported to participate in multiple processes related with genome regulation and compartmentalization. Moreover, they have been involved in the facilitation of pathological mutations in many diseases, including cancer.
View Article and Find Full Text PDFMotivation: Statistically assessing the relation between a set of genomic regions and other genomic features is a common challenging task in genomic and epigenomic analyses. Randomization based approaches implicitly take into account the complexity of the genome without the need of assuming an underlying statistical model.
Summary: regioneR is an R package that implements a permutation test framework specifically designed to work with genomic regions.
Background: Misregulation of the PTGS (prostaglandin endoperoxide synthase, also known as cyclooxygenase or COX) pathway may lead to the accumulation of pro-inflammatory signals, which constitutes a hallmark of cancer. To get insight into the role of this signaling pathway in colorectal cancer (CRC), we have characterized the transcriptional and epigenetic landscapes of the PTGS pathway genes in normal and cancer cells.
Results: Data from four independent series of CRC patients (502 tumors including adenomas and carcinomas and 222 adjacent normal tissues) and two series of colon mucosae from 69 healthy donors have been included in the study.