Dysfunction of some mitochondrial aminoacyl-tRNA synthetases (encoded by the , , and genes) results in a great variety of phenotypes ranging from non-syndromic hearing impairment (NSHI) to very complex syndromes, with a predominance of neurological signs. The diversity of roles that are played by these moonlighting enzymes and the fact that most pathogenic variants are missense and affect different domains of these proteins in diverse compound heterozygous combinations make it difficult to establish genotype-phenotype correlations. We used a targeted gene-sequencing panel to investigate the presence of pathogenic variants in those four genes in cohorts of 175 Spanish and 18 Colombian familial cases with non-DFNB1 autosomal recessive NSHI.
View Article and Find Full Text PDFNon-syndromic hearing impairment (NSHI) is a very heterogeneous genetic condition, involving over 130 genes. Mutations in , encoding connexin-26, are a major cause of NSHI (the DFNB1 type), but few other genes have significant epidemiological contributions. Mutations in the gene result in the DFNB16 type of autosomal recessive NSHI, a common cause of moderate hearing loss.
View Article and Find Full Text PDFCingulin (CGN) is a cytoskeleton-associated protein localized at the apical junctions of epithelial cells. CGN interacts with major cytoskeletal filaments and regulates RhoA activity. However, physiological roles of CGN in development and human diseases are currently unknown.
View Article and Find Full Text PDFPyruvate kinase deficiency (PKD) is an autosomal recessive disorder caused by mutations in the gene. PKD-erythroid cells suffer from an energy imbalance caused by a reduction of erythroid pyruvate kinase (RPK) enzyme activity. PKD is associated with reticulocytosis, splenomegaly and iron overload, and may be life-threatening in severely affected patients.
View Article and Find Full Text PDFJ Inherit Metab Dis
March 2023
Coenzyme A (CoA) is an essential cofactor involved in a range of metabolic pathways including the activation of long-chain fatty acids for catabolism. Cells synthesize CoA de novo from vitamin B5 (pantothenate) via a pathway strongly conserved across prokaryotes and eukaryotes. In humans, it involves five enzymatic steps catalyzed by four enzymes: pantothenate kinase (PANK [isoforms 1-4]), 4'-phosphopantothenoylcysteine synthetase (PPCS), phosphopantothenoylcysteine decarboxylase (PPCDC), and CoA synthase (COASY).
View Article and Find Full Text PDFmiRNAs dictate relevant virus-host interactions, offering new avenues for interventions to achieve an HIV remission. We aimed to enhance HIV-specific cytotoxic responses-a hallmark of natural HIV control- by miRNA modulation in T cells. We recruited 12 participants six elite controllers and six patients with chronic HIV infection on long-term antiretroviral therapy ("progressors").
View Article and Find Full Text PDFCollagen VI-related disorders are the second most common congenital muscular dystrophies for which no treatments are presently available. They are mostly caused by dominant-negative pathogenic variants in the genes encoding α chains of collagen VI, a heteromeric network forming collagen; for example, the c.877G>A; p.
View Article and Find Full Text PDFGenes (Basel)
January 2022
Pathogenic variants in the gene cause the DFNB59 type of autosomal recessive non-syndromic hearing impairment (AR-NSHI). Phenotypes are not homogeneous, as a few subjects show auditory neuropathy spectrum disorder (ANSD), while others show cochlear hearing loss. The numbers of reported cases and pathogenic variants are still small to establish accurate genotype-phenotype correlations.
View Article and Find Full Text PDFHearing impairment not etiologically associated with clinical signs in other organs (non-syndromic) is genetically heterogeneous, so that over 120 genes are currently known to be involved. The frequency of mutations in each gene and the most frequent mutations vary throughout populations. Here we review the genetic etiology of non-syndromic hearing impairment (NSHI) in Europe.
View Article and Find Full Text PDFEwing sarcoma is an aggressive bone cancer affecting children and young adults. The main molecular hallmark of Ewing sarcoma are chromosomal translocations that produce chimeric oncogenic transcription factors, the most frequent of which is the aberrant transcription factor EWSR1-FLI1. Because this is the principal oncogenic driver of Ewing sarcoma, its inactivation should be the best therapeutic strategy to block tumor growth.
View Article and Find Full Text PDFNonsyndromic hereditary hearing loss is a common sensory defect in humans that is clinically and genetically highly heterogeneous. So far, 122 genes have been associated with this disorder and 50 of them have been linked to autosomal dominant (DFNA) forms like DFNA68, a rare subtype of hearing impairment caused by disruption of a stereociliary scaffolding protein (HOMER2) that is essential for normal hearing in humans and mice. In this study, we report a novel HOMER2 variant (c.
View Article and Find Full Text PDFThe knowledge of the genetic variability of the local population is of utmost importance in personalized medicine and has been revealed as a critical factor for the discovery of new disease variants. Here, we present the Collaborative Spanish Variability Server (CSVS), which currently contains more than 2000 genomes and exomes of unrelated Spanish individuals. This database has been generated in a collaborative crowdsourcing effort collecting sequencing data produced by local genomic projects and for other purposes.
View Article and Find Full Text PDFThe simple protocol described in this article aims to provide all required information, as a comprehensive, easy-to-follow step-by-step method, to ensure the generation of the expected genome-edited mice. Here, we provide protocols for the preparation of CRISPR-Cas9 reagents for microinjection and electroporation into one-cell mouse embryos to create knockout or knock-in mouse models, and for genotyping the resulting offspring with the latest innovative next-generation sequencing methods. © 2020 by John Wiley & Sons, Inc.
View Article and Find Full Text PDFKCNJ10 encodes the inward-rectifying potassium channel (Kir4.1) that is expressed in the brain, inner ear, and kidney. Loss-of-function mutations in KCNJ10 gene cause a complex syndrome consisting of epilepsy, ataxia, intellectual disability, sensorineural deafness, and tubulopathy (EAST/SeSAME syndrome).
View Article and Find Full Text PDFBackground: Perrault syndrome is a rare autosomal recessive disorder that is characterized by the association of sensorineural hearing impairment and ovarian dysgenesis in females, whereas males have only hearing impairment. In some cases, patients present with a diversity of neurological signs. To date, mutations in six genes are known to cause Perrault syndrome, but they do not explain all clinically-diagnosed cases.
View Article and Find Full Text PDFLabyrinthine aplasia, microtia, and microdontia (LAMM) is an autosomal recessive condition causing profound congenital deafness, complete absence of inner ear structures (usually Michel's aplasia), microtia (usually type 1) and microdontia. To date, several families have been described with this condition and a number of mutations has been reported. We report on eight further cases of LAMM syndrome including three novel mutations, c.
View Article and Find Full Text PDFHIV remains incurable because of viral persistence in latent reservoirs that are inaccessible to antiretroviral therapy. A potential curative strategy is to reactivate viral gene expression in latently infected cells. However, no drug so far has proven to be successful in vivo in reducing the reservoir, and therefore new anti-latency compounds are needed.
View Article and Find Full Text PDFPurpose: Pathogenic variants in GJB2 are the most common cause of autosomal recessive sensorineural hearing loss. The classification of c.101T>C/p.
View Article and Find Full Text PDFLinkage analysis combined with whole-exome sequencing in a large family with congenital and stable non-syndromic unilateral and asymmetric hearing loss (NS-UHL/AHL) revealed a heterozygous truncating mutation, c.286_303delinsT (p.Ser96Ter), in KITLG.
View Article and Find Full Text PDF