Publications by authors named "Miguel A Lopez Manchado"

The mechanical, thermal and gamma radiation attenuation properties of ethylene-propylene-diene monomer (EPDM)-based composites containing graphene nanoplatelets (GNs) and bismuth (III) oxide nanoparticles (B) were investigated. The use of polyethylene glycol (PEG) as a compatibilizer to improve the dispersion of the fillers was also investigated. The results showed that the combined use of these fillers resulted in a drastic increase in mechanical properties, reaching 123% and 83% of tensile strength and elongation at break, respectively, compared to those of EPDM.

View Article and Find Full Text PDF

Self-healing materials offer a potential solution to the problem of damage to fibre-reinforced plastics (FRPs) by allowing for the in-service repair of composite materials at a lower cost, in less time, and with improved mechanical properties compared to traditional repair methods. This study investigates for the first time the use of poly(methyl methacrylate) (PMMA) as a self-healing agent in FRPs and evaluates its effectiveness both when blended with the matrix and when applied as a coating to carbon fibres. The self-healing properties of the material are evaluated using double cantilever beam (DCB) tests for up to three healing cycles.

View Article and Find Full Text PDF

Polyurethane foams (PUFs) are a significant group of polymeric foam materials. Thanks to their outstanding mechanical, chemical, and physical properties, they are implemented successfully in a wide range of applications. Conventionally, PUFs are obtained in polyaddition reactions between polyols, diisoycyanate, and water to get a CO foaming agent.

View Article and Find Full Text PDF

New bio-thermoplastic elastomer composites with self-healing capacities based on epoxidized natural rubber and polycaprolactone blends reinforced with alginates were developed. This group of salts act as natural reinforcing fillers, increasing the tensile strength of the unfilled rubber from 5.6 MPa to 11.

View Article and Find Full Text PDF

Poly(hydroxyurethanes) (PHUs) have been suggested as isocyanate-free, low-toxicity alternatives to polyurethanes (PUs). However, PHUs present low mechanical properties due to the presence of side reactions that limit the production of high-molar mass polymers. Here, we present the synthesis under mild conditions and atmospheric pressure of bi-cyclic carbonate monomer for the production of PHU nanocomposites with good physical properties.

View Article and Find Full Text PDF

It is impossible to describe the recent progress of our society without considering the role of polymers; however, for a broad audience, "" is usually related to environmental pollution. The poor disposal and management of polymeric waste has led to an important environmental crisis, and, within polymers, plastics have attracted bad press despite being easily reprocessable. Nonetheless, there is a group of polymeric materials that is particularly more complex to reprocess, rubbers.

View Article and Find Full Text PDF

Foam products are one of the largest markets for polyurethane (PU) and are heavily used in many sectors. However, current PU formulations use highly toxic and environmentally unfriendly production processes. Meanwhile, the increasing environmental concerns and regulations are intensifying the research into green and non-toxic products.

View Article and Find Full Text PDF

The combination of vulcanizing agents is an adequate strategy to develop multiple networks that consolidate the best of different systems. In this research, sulfur (S), and zinc oxide ( ZnO) were combined as vulcanizing agents in a matrix of carboxylated nitrile rubber (XNBR). The resulting dual network improved the abrasion resistance of up to ~15% compared to a pure ionically crosslinked network, and up to ~115% compared to a pure sulfur-based covalent network.

View Article and Find Full Text PDF

Until nowadays, the concept of the 3Rs (Reduce, Reuse, Recycle) has tried to develop responsible consumption habits. Nonetheless, the rise of ecological thinking has generated the appearance of four new Rs in addition to these basic 3Rs; the currently 7Rs (Reduce, Reuse, Recycle, Redesign, Renew, Repair and Recover) which refer to the actions necessary to achieve the change towards a circular economy (CE) model. This model aims at extending the lifetime of the resources through their rational and efficient use to generate value repeatedly, reducing costs and waste.

View Article and Find Full Text PDF

Hybrid ethylene-propylene-diene-monomer (EPDM) nanocomposite foams were produced via compression molding with enhanced electromagnetic wave absorption efficiency. The hybrid filler, consisting of 20 phr ferroelectric barium titanate (BT) and various loading fractions of multi-wall carbon nanotubes (MWCNTs), synergistically increased the electromagnetic (EM) wave absorption characteristics of the EPDM foam. Accordingly, while the EPDM foam filled with 20 phr BT was transparent to the EM wave within the frequency range of 8.

View Article and Find Full Text PDF

Itaconic acid (IA) is an organic acid produced by the fermentation of sugars with It has been identified as one of the top 12 building-block chemicals. Here, we report the use of IA as a possible substitute to petroleum-based compatibilizers in polymer composite. We applied this study to thermoplastic elastomers based on styrene copolymers, since they are commonly used in blends and composites.

View Article and Find Full Text PDF

The development of self-healing rubbers is currently under investigation as a strategy to promote their reuse and, hence, reduce their waste. However, autonomous, multicycle self-healing rubbers with good mechanical properties have so far proven difficult to achieve. Here, mechanically robust composites based on epoxidized natural rubber (ENR) and thermally reduced graphene oxide (TRGO) were successfully designed and prepared with a high healing efficiency of up to 85% at room temperature without applying external stimuli.

View Article and Find Full Text PDF

In this work, a new methodology for the synthesis of three-component polymers (TCPs) was developed using a seeded, semi-continuous free-radical emulsion polymerization towards the optimization of the moduli-ultimate deformation performance and energy dissipation capacity for a styrene (S), n-butyl acrylate (BA), and 4-vinylbenzyl chloride (VBC) system. The three components were sequentially fed in pairs, varying feed composition along the conversion using S as the common monomer. To prepare a reference material, an industrial method was utilized with those monomers, using an equivalent global composition in a two-stage batch process (TS).

View Article and Find Full Text PDF

Current regulations demand tires with long lifetime and reduced fuel consumption without sacrificing car safety. However, tire technology still needs to reach a suitable balance between these three indicators. Here, we address them by developing a self-healing tire compound using styrene-butadiene rubber (SBR) as the matrix and reclaimed tire waste as the sustainable filler.

View Article and Find Full Text PDF

In this work, composites of high density polyethylene (HDPE) with chitosan were prepared by melt compounding in a laboratory internal mixer. Maleic anhydride grafted HDPE (PE-g-MA) in a concentration up to 25 phr was used as a compatibilizer to enhance the dispersing effect of chitosan in the HDPE matrix. The degree of crystallinity was investigated by X-ray diffraction (XRD) and the thermal properties were analyzed by differential scanning calorimetry (DSC) and thermogravimetry (TG).

View Article and Find Full Text PDF

Owing to their high strength and stiffness, thermal and environmental stability, lower shrinkage, and water resistance, epoxy resins have been the preferred matrix for the development of syntactic foams using hollow glass microspheres. Although these foams are exploited in multiple applications, one of their issues is the possibility of breakage of the glass hollow microspheres during processing. Here, we present a straightforward and single-step foaming protocol using expandable polymeric microspheres based on the well-established compression molding process.

View Article and Find Full Text PDF

Multifunctional elastomer nanocomposites have been applied in several high-tech fields. The design of materials with tailored properties capable of tuning their performance is a topical challenge. Here, we demonstrate that it is possible to modulate the mechanical and transport properties of silicone rubber nanocomposites by controlling the structure, chemical composition and morphology of the graphene material.

View Article and Find Full Text PDF

The fluorination of two types of graphene oxides conducted by an easy and scalable deoxyfluorination reaction is reported. This reaction was carried out using diethylaminodifluorosulfinium tetrafluoroborate, a stable compound and an efficient reagent for replacing oxygenated functional groups of graphene oxide by fluoride. The graphene oxide produced by the Hummers' method (GOH) showed lower reactivity than that produced by the Brodie's method (GOB).

View Article and Find Full Text PDF

Graphene, graphene-based nanomaterials (GBNs), and carbon nanotubes (CNTs) are being investigated as potential substrates for the growth of neural cells. However, in most studies, the cells were seeded on these materials coated with various proteins implying that the observed effects on the cells could not solely be attributed to the GBN and CNT properties. Here, we studied the biocompatibility of uncoated thermally reduced graphene (TRG) and poly(vinylidene fluoride) (PVDF) membranes loaded with multi-walled CNTs (MWCNTs) using neural stem cells isolated from the adult mouse olfactory bulb (termed aOBSCs).

View Article and Find Full Text PDF

Graphene and graphene-based nanomaterials (GBNs) are being investigated as potential substrates for the growth of neural stem cells (NSCs), neurons and glia in cell culture models. In contrast, reports testing the effects of graphene directly with adult neural cells in vivo are missing. Here we studied the biocompatibility of thermally reduced graphene (TRG) with neurons and glia, as well as with the generation of new neurons in the adult brain in vivo.

View Article and Find Full Text PDF

The crystallization, mechanical and biodegradation properties of poly(lactic acid)/natural rubber/cellulose nanocrystals (CNC) bionanocomposites were evaluated. Three types of CNC were used in this study, one unmodified (CNC), long alkyl chain grafted CNC (C18-g-CNC) and PLA grafted CNC (PLA-g-CNC). The CNC modifications determined the affinity of the nanocrystals toward the polymers and reflected on the ultimate properties.

View Article and Find Full Text PDF

PLA/NR/cellulose nanowhisker composites were prepared using three types of cellulose nanocrystals (CNC), i.e. unmodified CNC obtained from acid hydrolysis of microcrystalline cellulose and two surface modified CNC.

View Article and Find Full Text PDF

We employed an easy and direct method to measure the thermal conductivity of epoxy in the liquid (nanofluid) and solid (nanocomposite) states using both rodlike and platelet-like carbon-based nanostructures. Comparing the experimental results with the theoretical model, an anomalous enhancement was obtained with multiwall carbon nanotubes, probably due to their layered structure and lowest surface resistance. Puzzling results for functionalized graphene sheet nanocomposites suggest that phonon coupling of the vibrational modes of the graphene and of the polymeric matrix plays a dominant role on the thermal conductivities of the liquid and solid states.

View Article and Find Full Text PDF

A new functionalised graphene sheet (FGS) filled poly(dimethyl)siloxane insulator nanocomposite has been developed with high dielectric constant, making it well suited for applications in flexible electronics. The dielectric permittivity increased tenfold at 10 Hz and 2 wt.% FGS, while preserving low dielectric losses and good mechanical properties.

View Article and Find Full Text PDF

The physical properties of many multiphase systems are determined by coarsening phenomena. From raindrops to polycrystal grains and foams, the formation and stability of these systems continuously evolve towards lower-energy configurations through events such as coalescence, Ostwald ripening and drainage. Here we propose a procedure to identify and characterise key topological transformations of coarsening phenomena using a physically-based fluid dynamic framework.

View Article and Find Full Text PDF