Publications by authors named "Miguel A Cazalilla"

Breaking a correlated pair in a superconductor requires an even number of fermions providing at least twice the pairing energy Δ. Here, we show that a single tunneling electron can also excite a pair breaking excitation in a proximitized gold film in the presence of magnetic impurities. Combining scanning tunneling spectroscopy with theoretical modeling, we map the excitation spectrum of an Fe-porphyrin molecule on the Au/V(100) proximitized surface into a manifold of entangled Yu-Shiba-Rusinov and spin excitations.

View Article and Find Full Text PDF

We derive a kinetic theory capable of dealing both with large spin-orbit coupling and Kondo screening in dilute magnetic alloys. We obtain the collision integral nonperturbatively and uncover a contribution proportional to the momentum derivative of the impurity scattering S matrix. The latter yields an important correction to the spin diffusion and spin-charge conversion coefficients, and fully captures the so-called side-jump process without resorting to the Born approximation (which fails for resonant scattering), or to otherwise heuristic derivations.

View Article and Find Full Text PDF

Efficient detection of spin-charge conversion is crucial for advancing our understanding of emergent phenomena in spin-orbit-coupled nanostructures. Here, we provide a proof of principle of an electrical detection scheme of spin-charge conversion that enables full disentanglement of competing spin-orbit coupling (SOC) transport phenomena in diffusive lateral channels, i.e.

View Article and Find Full Text PDF

We uncover two anomalous features in the nonlocal transport behavior of two-dimensional metallic materials with spin-orbit coupling. First, the nonlocal resistance can have negative values and oscillate with distance, even in the absence of a magnetic field. Second, the oscillations of the nonlocal resistance under an applied in-plane magnetic field (the Hanle effect) can be asymmetric under field reversal.

View Article and Find Full Text PDF

We review recent experimental and theoretical progress on ultracold alkaline-earth Fermi gases with emergent SU(N) symmetry. Emphasis is placed on describing the ground-breaking experimental achievements of recent years. The latter include (1) the cooling to below quantum degeneracy of various isotopes of ytterbium and strontium, (2) the demonstration of optical Feshbach resonances and the optical Stern-Gerlach effect, (3) the realization of a Mott insulator of (173)Yb atoms, (4) the creation of various kinds of Fermi-Bose mixtures and (5) the observation of many-body physics in optical lattice clocks.

View Article and Find Full Text PDF

Advances in large-area graphene synthesis via chemical vapour deposition on metals like copper were instrumental in the demonstration of graphene-based novel, wafer-scale electronic circuits and proof-of-concept applications such as flexible touch panels. Here, we show that graphene grown by chemical vapour deposition on copper is equally promising for spintronics applications. In contrast to natural graphene, our experiments demonstrate that chemically synthesized graphene has a strong spin-orbit coupling as high as 20 meV giving rise to a giant spin Hall effect.

View Article and Find Full Text PDF

We show that the extrinsic spin Hall effect can be engineered in monolayer graphene by decoration with small doses of adatoms, molecules, or nanoparticles originating local spin-orbit perturbations. The analysis of the single impurity scattering problem shows that intrinsic and Rashba spin-orbit local couplings enhance the spin Hall effect via skew scattering of charge carriers in the resonant regime. The solution of the transport equations for a random ensemble of spin-orbit impurities reveals that giant spin Hall currents are within the reach of the current state of the art in device fabrication.

View Article and Find Full Text PDF

The phases and excitation spectrum of an easy-axis ferromagnetic chain of S = 1/2 magnetic impurities built on the top of a clean metallic surface are studied. As a function of the (Kondo) coupling to the metallic surface and at low temperatures, the spin chain exhibits a quantum phase transition from an Ising ferromagnetic phase with long-range order to a paramagnetic phase where quantum fluctuations destroy the magnetic order. In the paramagnetic phase, the system consists of a chain of Kondo singlets where the impurities are completely screened by the metallic host.

View Article and Find Full Text PDF

The generalized Gibbs ensemble introduced for describing few-body correlations in exactly solvable systems following a quantum quench is related to the nonergodic way in which operators sample, in the limit of infinite time after the quench, the quantum correlations present in the initial state. The nonergodicity of the correlations is thus shown analyticallyto imply the equivalence with the generalized Gibbs ensemble for quantum Ising and XX spin chains as well as for the Luttinger model the thermodynamic limit, and for a broad class of initial states and correlation functions of both local and nonlocal operators.

View Article and Find Full Text PDF

A theory accounting for the dynamical aspects of the superfluid response of one dimensional (1D) quantum fluids is reported. In long 1D systems, the onset of superfluidity is related to the dynamical suppression of quantum phase slips at low temperatures. The effect of this suppression as a function of frequency and temperature is discussed within the framework of the experimentally relevant momentum response function.

View Article and Find Full Text PDF