Publications by authors named "Miguel A Caviedes"

Strain RA15 was isolated from the rhizosphere of the halophyte plant growing in the Odiel marshes (Huelva, Spain). RA15 cells were Gram stain-negative, non-spore-forming, aerobic rods and formed cream-coloured, opaque, mucoid, viscous, convex, irregular colonies with an undulate margin. Optimal growth conditions were observed on tryptic soy agar (TSA) plates supplemented with 2.

View Article and Find Full Text PDF

is a spontaneous Mediterranean legume that can be a good candidate as pioneer plants to limit regression of vegetation cover and loss of biodiversity in Tunisian arid soils. In order to grow legumes in such soils, pairing rhizobia and nodule associated bacteria (NAB) might provide numerous advantages. In this work, cultivable biodiversity of rhizobial symbionts and NAB in nodules of plants growing in five arid regions of south Tunisia was characterized.

View Article and Find Full Text PDF

Transgenic tobacco hairy roots expressing the bacterial arsenite efflux pump Acr3 from Ensifer medicae were generated. The gene product was targeted either to the plasma membrane (ACR3 lines) or to the tonoplast by fusing the ACR3 protein to the tonoplast integral protein TIP1.1 (TIP-ACR3 lines).

View Article and Find Full Text PDF

Strain EAR18 was isolated as an endophyte from the roots of a halophyte plant, , growing in the Odiel marshes (Huelva, Spain). Cells of strain EAR18 were Gram- stain-negative, motile, non-spore-forming aerobic rods. It grew optimally on tryptic soy agar supplemented with 2.

View Article and Find Full Text PDF

Two endophytic bacteria (EAod3 and EAod7) were isolated from the aerial part of plants of Arthrocnemum macrostachyum growing in the Odiel marshes (Huelva, Spain). Phylogenetic analysis based on 16S rRNA gene sequences indicated their affiliation to the genus Kushneria. 16S rRNA gene sequences of strains EAod3 and EAod7 showed the highest similarity to Kushneria marisflavi DSM 15357T (99.

View Article and Find Full Text PDF

Metal contamination of estuaries is a severe environmental problem, for which phytoremediation is gaining momentum. In particular, the associations between halophytes-autochthonous rhizobacteria have proven useful for metal phytostabilization in salt marshes. In this work, three bacterial strains (gram-negative and gram-positive) were used for Spartina densiflora inoculation.

View Article and Find Full Text PDF

Excess copper (Cu) in soils has deleterious effects on plant growth and can pose a risk to human health. In the last decade, legume-rhizobium symbioses became attractive biotechnological tools for metal phytostabilization. For this technique being useful, metal-tolerant symbionts are required, which can be generated through genetic manipulation.

View Article and Find Full Text PDF

A glasshouse experiment was designed to investigate the role of bacterial consortia isolated from the endosphere (CE) and rhizosphere (CR) of Arthrocnemum macrostachyum on its metal uptake capacity and tolerance in plants grown in metal polluted sediments. A. macrostachyum plants were randomly assigned to three bioaugmentation treatments (CE, CR and without inoculation) during 120days.

View Article and Find Full Text PDF

Unlabelled: The aim of this work was to develop a biotechnological tool to hyperaccumulate high copper (Cu) concentrations from wastewaters. Transgenic tobacco hairy roots were obtained by expressing, either the wild-type version of the gene copC from Pseudomonas fluorescens in the cytoplasm of plant cells (CuHR), or a modified version targeted to the vacuole (CuHR-V). Control hairy roots transformed with the empty vector (HR) were also generated.

View Article and Find Full Text PDF

The aim of our work was the isolation and characterization of bacteria from the rhizosphere of Spartina maritima in the metal contaminated Odiel estuary (Huelva, SW Spain). From 25 strains, 84 % were identified as gram-positive, particularly Staphylococcus and Bacillus. Gram-negative bacteria were represented by Pantoea and Salmonella.

View Article and Find Full Text PDF

The design of effective phytoremediation programs is severely hindered by poor seed germination on metal polluted soils. The possibility that inoculation with plant growth promoting rhizobacteria (PGPR) could help overcoming this problem is hypothesized. Our aim was investigating the role of PGPR in Spartina densiflora seed germination on sediments with different physicochemical characteristics and metal pollution degrees.

View Article and Find Full Text PDF

Irrigation of crops with microcystins (MCs)-containing waters-due to cyanobacterial blooms-affects plant productivity and could be a way for these potent toxins entering the food chain. This study was performed to establish whether MC-tolerant rhizobia could benefit growth, nodulation, and nitrogen metabolism of faba bean plants irrigated with MC-containing waters. For that, three different rhizobial strains-with different sensitivity toward MCs-were used: RhOF96 (most MC-sensitive strain), RhOF125 (most MC-tolerant strain), or Vicz1.

View Article and Find Full Text PDF

Two strains of Gram-stain-negative, chemo-organotrophic, aerobic and halophilic gammaproteobacteria, isolated from within the stem and roots of Spartina maritima in salt marshes from the south Atlantic Spanish coast, were found to represent a novel species in the genus Marinomonas through phylogenetic analysis of their 16S rRNA genes and phenotypic characterization. 16S rRNA gene sequences of the two strains shared < 96.2% similarity with other Marinomonas species, with Marimonas alcarazii being the most similar in sequence.

View Article and Find Full Text PDF

Endophytic bacterial population was isolated from Spartina maritima tissues, a heavy metal bioaccumulator cordgrass growing in the estuaries of Tinto, Odiel, and Piedras River (south west Spain), one of the most polluted areas in the world. Strains were identified and ability to tolerate salt and heavy metals along with plant growth promoting and enzymatic properties were analyzed. A high proportion of these bacteria were resistant toward one or several heavy metals and metalloids including As, Cu, and Zn, the most abundant in plant tissues and soil.

View Article and Find Full Text PDF

Spartina maritima is an ecosystem engineer that has shown to be useful for phytoremediation purposes. A glasshouse experiment using soil from a metal-contaminated estuary was designed to investigate the effect of a native bacterial consortium, isolated from S. maritima rizhosphere and selected owing to their plant growth promoting properties and multiresistance to heavy metals, on plant growth and metal accumulation.

View Article and Find Full Text PDF

The rhizobia-legume interaction has been proposed as an interesting and appropriate tool for rhizostabilization of soils contaminated with heavy metals. One of the main requirements to use this symbiosis is the availability of tolerant and symbiotically effective rhizobia. The aim of this work was to improve the symbiotic properties of the arsenic-resistant wild-type strain Ensifer medicae MA11 in Cu-contaminated substrates.

View Article and Find Full Text PDF

The genetic regulation underlying the effect of arsenic (As(III)) on the model symbiosis Medicago-Ensifer was investigated using a combination of physiological (split-roots), microscopy and genetic (microarrays, qRT-PCR and composite plants) tools. Nodulation was very sensitive to As(III) (median inhibitory dose (ID50) = 20 μM). The effect on root elongation and on nodulation was local (nonsystemic).

View Article and Find Full Text PDF

In this work, engineering Cu-hyperaccumulation in plants was approached. First, the copC gene from Pseudomonas sp. Az13, encoding a periplasmic Cu-binding protein, was expressed in Arabidopsis thaliana driven by the CaMV35S promoter (transgenic lines 35S-copC).

View Article and Find Full Text PDF

A bacterial strain, designated PW21(T), was isolated from root nodules of Prosopis farcta in Tunisia. Phylogenetic analysis based on 16S rRNA gene sequences placed the isolate into the genus Paenibacillus, with its closest relatives being Paenibacillus glycanilyticus DS-1(T) and Paenibacillus castaneae Ch-32(T) with identity values of 96.9 %.

View Article and Find Full Text PDF

Arsenic (As) reduces legume nodulation by affecting the first stages of the symbiotic interaction, which causes a 90% decrease in rhizobial infections. In this paper, we examine molecular mechanisms underlying this toxic effect, using the model system Medicago sativa-Sinorhizobium. In the presence and absence of As, the expression patterns of seven nodulin genes, markers for the different events leading to nodule formation, were analyzed by RT-PCR and by real-time RT-PCR.

View Article and Find Full Text PDF

Background: Rhizobium-Legume symbiosis is an attractive biological process that has been studied for decades because of its importance in agriculture. However, this system has undergone extensive study and although many of the major factors underpinning the process have been discovered using traditional methods, much remains to be discovered.

Results: Here we present an analysis of the 'Symbiosis Interactome' using novel computational methods in order to address the complex dynamic interactions between proteins involved in the symbiosis of the model bacteria Sinorhizobium meliloti with its plant hosts.

View Article and Find Full Text PDF

While the biology of nitrogen-fixing root nodules has been extensively studied, little is known about the evolutionary events that predisposed legume plants to form symbiosis with rhizobia. We have studied the presence and the expression of two pectic gene families in Medicago, polygalacturonases (PGs) and pectin methyl esterases (PMEs) during the early steps of the Sinorhizobium meliloti-Medicago interaction and compared them with related pollen-specific genes. First, we have compared the expression of MsPG3, a PG gene specifically expressed during the symbiotic interaction, with the expression of MsPG11, a highly homologous pollen-specific gene, using promoter-gus fusions in transgenic M.

View Article and Find Full Text PDF

Tip growth is a specialized type of polar growth where new cell wall is deposited in a localized region of the cell, the growing tip. These cells show a characteristic zonation, with a high accumulation of secretory vesicles containing cell wall components at the tip, followed by an organelle-enriched zone. MsPG3 is a Medicago sativa polygalacturonase gene isolated in our laboratory, specifically expressed during the interaction of this plant with its symbiotic partner Sinorhizobium meliloti and which might participate in tip growth processes during symbiosis.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session5h6itdetrikdd6v6kmpme2ubcln4gn3g): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once