Publications by authors named "Miguel A Betancourt-Solis"

The human astrovirus (HAstV) is a non-enveloped, single-stranded RNA virus that is a common cause of gastroenteritis. Most non-enveloped viruses use membrane disruption to deliver the viral genome into a host cell after virus uptake. The virus-host factors that allow for HAstV cell entry are currently unknown but thought to be associated with the host-protease-mediated viral maturation.

View Article and Find Full Text PDF

Membrane fusion is a crucial process in the eukaryotic cell. Specialized proteins are necessary to catalyze fusion. Atlastins are endoplasmic reticulum (ER) resident proteins implicated in homotypic fusion of the ER.

View Article and Find Full Text PDF

The endoplasmic reticulum (ER) is composed of flattened sheets and interconnected tubules that extend throughout the cytosol and makes physical contact with all other cytoplasmic organelles. This cytoplasmic distribution requires continuous remodeling. These discrete ER morphologies require specialized proteins that drive and maintain membrane curvature.

View Article and Find Full Text PDF

Many enveloped viruses encode a matrix protein. In the influenza A virus, the matrix protein M1 polymerizes into a rigid protein layer underneath the viral envelope to help enforce the shape and structural integrity of intact viruses. The influenza virus M1 is also known to mediate virus budding as well as the nuclear export of the viral nucleocapsids and their subsequent packaging into nascent viral particles.

View Article and Find Full Text PDF

Fusion of tubular membranes is required to form three-way junctions found in reticular subdomains of the endoplasmic reticulum. The large GTPase Atlastin has recently been shown to drive endoplasmic reticulum membrane fusion and three-way junction formation. The mechanism of Atlastin-mediated membrane fusion is distinct from SNARE-mediated membrane fusion, and many details remain unclear.

View Article and Find Full Text PDF