In a global change scenario, ocean warming and pathogen infection can occur simultaneously in coastal areas, threatening marine species. Data are shown on the impact of temperature on early larvae of the Mediterranean mussel Mytilus galloprovincialis. Increasing temperatures (18-20-22 °C) altered larval phenotypes at 48 hpf and affected gene expression from eggs to 24 and 48 hpf, with shell biogenesis related genes among the most affected.
View Article and Find Full Text PDFPhilos Trans R Soc Lond B Biol Sci
March 2024
Endocrine-disrupting chemicals (EDCs) represent a global threat to human health and the environment. In vertebrates, lipophilic EDCs primarily act by mimicking endogenous hormones, thus interfering with the transcriptional activity of nuclear receptors (NRs). The demonstration of the direct translation of these mechanisms into perturbation of NR-mediated physiological functions in invertebrates, however, has rarely proven successful, as the modes of action of EDCs in vertebrates and invertebrates seem to be distinct.
View Article and Find Full Text PDFBackground: Phospholipids are highly diverse molecules with pleiotropic biological roles, from membrane components and signaling molecules, whose composition can change in response to both endogenous and external stimuli. Recent lipidomic studies on edible bivalve mollusks were focused on lipid nutritional value and growth requirements. However, no data are available on phospholipid profiles during bivalve larval development.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
October 2023
The broadly utilized biocide triclosan (TCS) is continuously discharged in water compartments worldwide, where it is detected at concentrations of ng-µg/L. Given its lipophilicity and bioaccumulation, TCS is considered potentially harmful to human and environmental health and also as a potential endocrine disruptor (ED) in different species. In aquatic organisms, TCS can induce a variety of effects: however, little information is available on its possible impact on invertebrate development.
View Article and Find Full Text PDFPredicting the potential for species adaption to climate change is challenged by the need to identify the physiological mechanisms that underpin species vulnerability. Here, we investigated the sensitivity to ocean acidification in marine mussels during early development, and specifically the trochophore stage. Using RNA and DNA sequencing and RNA hybridization, we identified developmental processes associated with abnormal development and rapid adaptation to low pH.
View Article and Find Full Text PDFContaminants of Emerging Concerns (CECs) are defined as chemicals not commonly monitored in aquatic ecosystems, but with the potential to cause adverse effects on biota. CECs include Endocrine Disrupting Chemicals (EDCs) and Neuro-Endocrine disruptors (NEDs) of vertebrates. However, most invertebrates only rely on neuroendocrine systems to maintain homeostatic processes.
View Article and Find Full Text PDFIn the absence of standard methods for the detection/quantification of nanoplastics (NPs) in environmental samples, commercial nanopolymers are utilized as proxies for toxicity testing and environmental risk assessment. In marine species, a considerable amount of data are now available on the effects of nanopolystyrene (PS-NPs) of different size/surface characteristics. In this work, amino modified PS-NPs (PS-NH) (50 and 100 nm), purchased from two different companies, were compared in terms of behavior in exposure media and of biological responses, from molecular to organism level, in the model marine bivalve .
View Article and Find Full Text PDFTetrabromobisphenol A-TBBPA, a widely used brominated flame retardant detected in aquatic environments, is considered a potential endocrine disruptor-ED for its reproductive/developmental effects in vertebrates. In aquatic invertebrates, the modes of action of most EDs are largely unknown, due to partial knowledge of the mechanisms controlling neuroendocrine functions. In the marine bivalve Mytilus galloprovincialis, TBBPA has been previously shown to affect larval development in the 48 h larval toxicity assay at environmental concentrations.
View Article and Find Full Text PDFNuclear Receptors (NRs) are a superfamily of transcription factors specific to metazoans that have the unique ability to directly translate the message of a signaling molecule into a transcriptional response. In vertebrates, NRs are pivotal players in countless processes of both embryonic and adult physiology, with embryonic development being one of the most dynamic periods of NR activity. Accumulating evidence suggests that NR signaling is also a major regulator of development in marine invertebrates, although ligands and transactivation dynamics are not necessarily conserved with respect to vertebrates.
View Article and Find Full Text PDFBisphenol A-BPA, a widespread plastic additive, is an emerging contaminant of high concern and a potential endocrine disruptor in mammals. BPA also represents a potential threat for aquatic species, especially for larval stages. In the marine bivalve Mytilus galloprovincialis, BPA has been previously shown to affect early larval development and gene transcription.
View Article and Find Full Text PDFWhen considering the deployment of renewable energy sources in systems, the challenge of their utilization comes from their time instability when a mismatch between production and demand occurs. With the integration of thermal storages into systems that utilize renewable energy sources, such mismatch can be evened out. The use of phase-change materials (PCMs) as thermal storage has a theoretical advantage over the sensible one because of their high latent heat that is released or accumulated during the phase-change process.
View Article and Find Full Text PDFBivalve biomineralization is a highly complex and organized process, involving several molecular components identified in adults and larval stages. However, information is still scarce on the ontogeny of the organic matrix before calcification occurs. In this work, first shell formation was investigated in the mussel .
View Article and Find Full Text PDFCoastal marine ecosystems experience dynamic fluctuations in seawater carbonate chemistry. The importance of this variation in the context of ocean acidification requires knowing what aspect of variability biological processes respond to. We conducted four experiments (ranging from 3 to 22 days) with different variability regimes (pH 7.
View Article and Find Full Text PDF