Publications by authors named "Miffy Cheng"

When formulating mRNA into lipid nanoparticles (LNP), various copy numbers of mRNA are encapsulated, leading to a distribution of mRNA loading levels within the LNPs. It is unclear whether the mRNA loading level affects the functional delivery of the message. Here we show that depending on the mRNA loading level, LNPs exhibit distinct mass densities and can be fractionated via ultracentrifugation.

View Article and Find Full Text PDF

Thallium-201 is an Auger electron-emitting radionuclide with significant potential for targeted molecular radiotherapy of cancer. It stands out among other Auger electron emitters by releasing approximately 37 Auger and Coster-Kronig electrons per decay, which is one of the highest numbers in its category. It has also a convenient half-life of 73 h, a stable daughter product, established production methods, and demonstrated high radiotoxicity.

View Article and Find Full Text PDF

Lipid nanoparticle (LNP) formulations are a proven method for the delivery of nucleic acids for gene therapy as exemplified by the worldwide rollout of LNP-based RNAi therapeutics and mRNA vaccines. However, targeting specific tissues or cells is still a major challenge. After LNP administration, LNPs interact with biological fluids (i.

View Article and Find Full Text PDF

Throughout the last decades, mRNA vaccines have been developed as a cancer immunotherapeutic and the technology recently gained momentum during the COVID-19 pandemic. Recent promising results obtained from clinical trials investigating lipid-based mRNA vaccines in cancer therapy further highlighted the potential of this therapy. Interestingly, while the technologies being used in authorized mRNA vaccines for the prevention of COVID-19 are relatively similar, mRNA vaccines in clinical development for cancer vaccination show marked differences in mRNA modification, lipid carrier, and administration route.

View Article and Find Full Text PDF

Gadolinium (Gd)-coordinated texaphyrin (Gd-Tex) is a promising radiosensitizer that entered clinical trials, but temporarily fails largely due to insufficient radiosensitization efficacy. Little attention has been given to using nanovesicles to improve its efficacy. Herein, Gd-Tex is transformed into building blocks "Gd-Tex-lipids" to self-assemble nanovesicles called Gd-nanotexaphyrins (Gd-NTs), realizing high density packing of Gd-Tex in a single nanovesicle and achieving high Gd-Tex accumulation in tumors.

View Article and Find Full Text PDF

The transfection potency of lipid nanoparticle (LNP) mRNA systems is critically dependent on the ionizable cationic lipid component. LNP mRNA systems composed of optimized ionizable lipids often display distinctive mRNA-rich "bleb" structures. Here, it is shown that such structures can also be induced for LNPs containing nominally less active ionizable lipids by formulating them in the presence of high concentrations of pH 4 buffers such as sodium citrate, leading to improved transfection potencies both in vitro and in vivo.

View Article and Find Full Text PDF

Messenger RNA (mRNA) lipid nanoparticles (LNPs) have emerged at the forefront during the COVID-19 vaccination campaign. Despite their tremendous success, mRNA vaccines currently require storage at deep freeze temperatures which complicates their storage and distribution, and ultimately leads to lower accessibility to low- and middle-income countries. To elaborate on this challenge, we investigated freeze-drying as a method to enable storage of mRNA LNPs at room- and even higher temperatures.

View Article and Find Full Text PDF

Lipid nanoparticles (LNPs) have achieved clinical success in delivering small interfering RNAs (siRNAs) for targeted gene therapy. However, endosomal escape of siRNA into the cytosol remains a fundamental challenge for LNPs. Herein, we report a strategy termed light-activated siRNA endosomal release (LASER) to address this challenge.

View Article and Find Full Text PDF

Nanoparticles' uptake by cancer cells upon reaching the tumor microenvironment is often the rate-limiting step in cancer nanomedicine. Herein, we report that the inclusion of aminopolycarboxylic acid conjugated lipids, such as EDTA- or DTPA-hexadecylamide lipids in liposome-like porphyrin nanoparticles (PS) enhanced their intracellular uptake by 25-fold, which was attributed to these lipids' ability to fluidize the cell membrane in a detergent-like manner rather than by metal chelation of EDTA or DTPA. EDTA-lipid-incorporated-PS (ePS) take advantage of its unique active uptake mechanism to achieve >95 % photodynamic therapy (PDT) cell killing compared to <5 % cell killing by PS.

View Article and Find Full Text PDF

Advanced-stage prostate cancer remains an incurable disease with poor patient prognosis. There is an unmet clinical need to target androgen receptor (AR) splice variants, which are key drivers of the disease. Some AR splice variants are insensitive to conventional hormonal or androgen deprivation therapy due to loss of the androgen ligand binding domain at the C-terminus and are constitutively active.

View Article and Find Full Text PDF

In this brief perspective, we describe key events in the history of the lipid-based nanomedicine field, highlight Canadian contributions, and outline areas where lipid nanoparticle technology is poised to have a transformative effect on the future of medicine.

View Article and Find Full Text PDF

Theranostic nanoparticles aim to integrate diagnostic imaging and therapy to facilitate image-guided treatment protocols. Herein, we present a theranostic nanotexaphyrin for prostate-specific membrane antigen (PSMA)-targeted radionuclide imaging and focal photodynamic therapy (PDT) accomplished through the chelation of metal isotopes (In, Lu). To realize nanotexaphyrin's theranostic properties, we developed a rapid and robust In/Lu-nanotexaphyrin radiolabeling method using a microfluidic system that achieved a high radiochemical yield (>90%).

View Article and Find Full Text PDF

Background: Porphyrin-lipids are versatile building blocks that enable cancer theranostics and have been applied to create several multimodal nanoparticle platforms, including liposome-like porphysome (aqueous-core), porphyrin nanodroplet (liquefied gas-core), and ultrasmall porphyrin lipoproteins. Here, we used porphyrin-lipid to stabilize the water/oil interface to create porphyrin-lipid nanoemulsions with paclitaxel loaded in the oil core (PLNE-PTX), facilitating combination photodynamic therapy (PDT) and chemotherapy in one platform.

Results: PTX (3.

View Article and Find Full Text PDF

Hypoxia is a ubiquitous feature of solid tumors, which plays a key role in tumor angiogenesis and resistance development. Conventional hypoxia detection methods lack continuous functional detection and are generally less suitable for dynamic hypoxia measurement. Optical sensors hereby provide a unique opportunity to noninvasively image hypoxia with high spatiotemporal resolution and enable real-time detection.

View Article and Find Full Text PDF

Organic building blocks are the centerpieces of "one-for-all" nanoparticle development. Herein, we report the synthesis of a novel aza-BODIPY-lipid building block and its self-assembly into a liposomal nanoparticle (BODIPYsome). We observed optically stable NIR J-aggregation within the BODIPYsome that is likely attributed to J-dimerization.

View Article and Find Full Text PDF

The discovery and synthesis of multifunctional organic building blocks for nanoparticles have remained challenging. Texaphyrin macrocycles are multifunctional, all-organic compounds that possess versatile metal-chelation capabilities and unique theranostics properties for biomedical applications. Unfortunately, there are significant difficulties associated with the synthesis of texaphyrin-based subunits capable of forming nanoparticles.

View Article and Find Full Text PDF

We herein report the synthesis and analysis of a novel aza-BODIPY-antibody conjugate, formed by controlled and regioselective bioconjugation methodology. Employing the clinically relevant antibody, which targets HER2 positive cancers, represents an excellent example of an antibody targeting strategy for this class of near-IR emitting fluorophore. The NIR fluorescence and binding properties were validated through in vitro studies using live cell confocal imaging.

View Article and Find Full Text PDF

Exploitation of photosensitizers as payloads for antibody-based anticancer therapeutics offers a novel alternative to the small pool of commonly utilized cytotoxins. However, existing bioconjugation methodologies are incompatible with the requirement of increased antibody loading without compromising antibody function, stability, or homogeneity. Herein, we describe the first application of dendritic multiplier groups to allow the loading of more than 4 porphyrins to a full IgG antibody in a site-specific and highly homogeneous manner.

View Article and Find Full Text PDF

Fluorescence is an essential imaging modality for labelling and visualising cells and sub-cellular structures. Multicolour labelling is especially challenging due to differences in physicochemical and photophysical behaviour of structurally unrelated fluorophores in the heterogeneous environments found in sub-cellular compartments. Herein, we report the conjugation of three azide-bearing BODIPYs with similar core structures but widely different emission wavelengths (green, red and NIR) to tyrosine residues of a model globular protein (BSA) via a common linking methodology.

View Article and Find Full Text PDF

Objectives: This study surveyed Web 2.0 application in three types of selected health or medical-related organisations such as university medical libraries, hospitals and non-profit medical-related organisations.

Methods: Thirty organisations participated in an online survey on the perceived purposes, benefits and difficulties in using Web 2.

View Article and Find Full Text PDF