Publications by authors named "Mietzner T"

Protoporphyrinogen oxidase (PPO)-inhibiting herbicides are used to control weeds in a variety of crops. These herbicides inhibit heme and photosynthesis in plants. PPO-inhibiting herbicides are used to control (Palmer amaranth) especially those with resistance to glyphosate and acetolactate synthase (ALS) inhibiting herbicides.

View Article and Find Full Text PDF

4-Hydroxyphenylpyruvate dioxygenase (HPPD) catalyzes the second reaction in the tyrosine catabolism and is linked to the production of cofactors plastoquinone and tocopherol in plants. This important biological role has put HPPD in the focus of current herbicide design efforts including the development of herbicide-tolerant mutants. However, the molecular mechanisms of substrate binding and herbicide tolerance have yet to be elucidated.

View Article and Find Full Text PDF

The prevalent occurrence of herbicide resistant weeds increases the necessity for new site of action herbicides for effective control as well as to relax selection pressure on the known sites of action. As a consequence, interest increased in the unexploited molecule cinmethylin as a new solution for the control of weedy grasses in cereals. Therefore, the mechanism of action of cinmethylin was reevaluated.

View Article and Find Full Text PDF

Several of the enzymes related to the folate cycle are well-known for their role as clinically validated antimalarial targets. Nevertheless for serine hydroxymethyltransferase (SHMT), one of the key enzymes of this cycle, efficient inhibitors have not been described so far. On the basis of plant SHMT inhibitors from an herbicide optimization program, highly potent inhibitors of Plasmodium falciparum (Pf) and Plasmodium vivax (Pv) SHMT with a pyrazolopyran core structure were identified.

View Article and Find Full Text PDF

Background: Host-derived (LL-37) and synthetic (WLBU-2) cationic antimicrobial peptides (CAPs) are known for their membrane-active bactericidal properties. LL-37 is an important mediator for immunomodulation, while the mechanism of action of WLBU-2 remains unclear.

Objective: To determine if WLBU-2 induces an early proinflammatory response that facilitates bacterial clearance in cystic fibrosis (CF).

View Article and Find Full Text PDF

The emergence of multidrug-resistant (MDR) pathogens underscores the need for new antimicrobial agents to overcome the resistance mechanisms of these organisms. Cationic antimicrobial peptides (CAPs) provide a potential source of new antimicrobial therapeutics. We previously characterized a lytic base unit (LBU) series of engineered CAPs (eCAPs) of 12 to 48 residues demonstrating maximum antibacterial selectivity at 24 residues.

View Article and Find Full Text PDF

Background: Gram negative bacteria require iron for growth and virulence. It has been shown that certain pathogenic bacteria such as Neisseria gonorrhoeae possess a periplasmic protein called ferric binding protein (FbpA), which is a node in the transport of iron from the cell exterior to the cytosol.

Scope Of Review: The relevant literature is reviewed which establishes the molecular mechanism of FbpA mediated iron transport across the periplasm to the inner membrane.

View Article and Find Full Text PDF

Ferric binding protein A (FbpA) plays a central role in the iron acquisition processes of pathogenic Neisseria gonorrheae, Neisseria meningitidis, and Haemophilus influenzae. FbpA functions as an iron shuttle within the periplasmic space of these Gram-negative human pathogens. Iron is picked up by FbpA at the periplasmic aspect of the outer membrane with concomitant acquisition of a synergistic anion.

View Article and Find Full Text PDF

Neisseria gonorrhoeae has the capacity to acquire iron from its human host by removing this essential nutrient from serum transferrin. The transferrin binding proteins, TbpA and TbpB constitute the outer membrane receptor complex responsible for binding transferrin, extracting the tightly bound iron from the host-derived molecule, and transporting iron into the periplasmic space of this Gram-negative bacterium. Once iron is transported across the outer membrane, ferric binding protein A (FbpA) moves the iron across the periplasmic space and initiates the process of transport into the bacterial cytosol.

View Article and Find Full Text PDF

Topical microbicides for prevention of sexually transmitted diseases (STDs) would be especially useful for women who are not able to persuade their partner(s) to take precautions. Many topical microbicides are in various stages of development, based on a variety of active ingredients. We investigated the in vitro activity of an engineered antimicrobial peptide (WLBU2) and a lipid (3-O-octyl-sn-glycerol [3-OG]) which could potentially be used as active ingredients in such a product.

View Article and Find Full Text PDF

The bacterial transferrin ferric binding protein A (FbpA) requires an exogenous anion to facilitate iron sequestration, and subsequently to shuttle the metal across the periplasm to the cytoplasmic membrane. In the diverse conditions of the periplasm, numerous anions are known to be present. Prior in vitro experiments have demonstrated the ability of multiple anions to fulfill the synergistic iron-binding requirement, and the identity of the bound anion has been shown to modulate important physicochemical properties of iron-bound FbpA (FeFbpA).

View Article and Find Full Text PDF

Antimicrobial proteins comprise a significant component of the acute innate immune response to infection. They are induced by pattern recognition receptors as well as by cytokines of the innate and adaptive immune pathways and play important roles in infection control and immunomodulatory homeostasis. Lipocalin 2 (siderocalin, NGAL, 24p3), a siderophore-binding antimicrobial protein, is critical for control of systemic infection with Escherichia coli; however, its role in mucosal immunity in the respiratory tract is unknown.

View Article and Find Full Text PDF

The obligate human pathogens Haemophilus influenzae, Neisseria gonorrhoeae, and N. meningitidis utilize a highly conserved, three-protein ATP-binding cassette transporter (FbpABC) to shuttle free Fe(3+) from the periplasm and across the cytoplasmic membrane. The periplasmic binding protein, ferric binding protein (FbpA), is capable of transporting other trivalent cations, including Ga(3+), which, unlike Fe(3+), is not redox-active.

View Article and Find Full Text PDF

Ferric binding protein, FbpA, is a member of the transferrin superfamily whose function is to move an essential nutrient, iron, across the periplasm and into the cytosol through formation of a ternary complex containing Fe (3+) and a synergistic anion, X. Here we utilize SUPREX ( stability of unpurified proteins from rates of H/D exchange) to determine the identification and distribution of the synergistic anion in FeFbpA-X species in periplasmic preparations from Gram-negative bacteria. SUPREX is a mass spectrometry-based technique uniquely suited for thermodynamic analyses of protein-ligand complexes in complex biological mixtures such as periplasmic preparations.

View Article and Find Full Text PDF

The ferric binding protein, FbpA, has been demonstrated to facilitate the transport of naked Fe3+ across the periplasmic space of several Gram-negative bacteria. The sequestration of iron by FbpA is facilitated by the presence of a synergistic anion, such as phosphate or sulfate. Here we report the sequestration of Fe3+ by FbpA in the presence of sulfate, at an assumed periplasmic pH of 6.

View Article and Find Full Text PDF

Objectives: We describe the antimicrobial activity against Pseudomonas aeruginosa of the de novo-derived antimicrobial peptide WLBU2 in an animal model of infection.

Methods: For this study, an intravenous (iv) model of P. aeruginosa infection was established.

View Article and Find Full Text PDF

The obligate human pathogen Haemophilus influenzae utilizes a siderophore-independent (free) Fe(3+) transport system to obtain this essential element from the host iron-binding protein transferrin. The hFbpABC transporter is a binding protein-dependent ABC transporter that functions to shuttle (free) Fe(3+) through the periplasm and across the inner membrane of H. influenzae.

View Article and Find Full Text PDF

The efficacy of a novel synthetic antimicrobial peptide (WLBU2) was evaluated against three oral microorganisms (grown planktonically): Streptococcus gordonii, Fusobacterium nucleatum, and Porphyromonas gingivalis. WLBU2 killed all three species, with F. nucleatum being the most susceptible.

View Article and Find Full Text PDF

A combination microbicide using the lipid-ether 1-0-octyl-sn-glycerol (OG) (3 mM) and peptide LSA5 (9 microM) synergistically inactivated six clinical isolates of herpes simplex virus type 2 (HSV-2) by 30- to 100-fold and five of six HSV-1 isolates by 10-fold more than the sum of OG and LSA5 used individually within 30 min. OG plus LSA5 inactivated all HSV clinical isolates by > or = 1,000-fold in 10 to 40 min.

View Article and Find Full Text PDF

Cationic amphipathic peptides have been extensively investigated as a potential source of new antimicrobials that can complement current antibiotic regimens in the face of emerging drug-resistant bacteria. However, the suppression of antimicrobial activity under certain biologically relevant conditions (e.g.

View Article and Find Full Text PDF

The ferric binding protein (FbpA) transports iron across the periplasmic space of certain Gram-negative bacteria and is an important component involved in iron acquisition by pathogenic Neisseria spp. (Neisseria gonorrheae and Neisseria meningitidis). Previous work has demonstrated that the synergistic anion, required for tight Fe(3+) sequestration by FbpA, also plays a key role in inserting Fe(3+) into the FbpA binding site.

View Article and Find Full Text PDF

The antimicrobial activity of the collective molecules comprising human milk reflects an evolutionarily successful paradigm for preventing and limiting microbial infection. Understanding the molecules that participate in this process and how they work can yield insight into potentially new antimicrobial therapies. Upon proteolytic processing, antimicrobial peptides can be derived from milk proteins, such as lactoferrin, casein, and lysozyme.

View Article and Find Full Text PDF

Comparison of human immunodeficiency virus lentiviral lytic peptide 1 with other host-derived peptides indicates that antimicrobial properties of membrane-active peptides are markedly influenced by their cationic, hydrophobic, and amphipathic properties. Many common themes, such as Arg composition of the cationic face of an amphipathic helix and the importance of maintaining the hydrophobic face, have been deduced from these observations. These studies suggest that a peptide with these structural properties can be derived de novo by using only a few strategically positioned amino acids.

View Article and Find Full Text PDF

SUPREX (stability of unpurified proteins from rates of H/D exchange) is a H/D exchange- and matrix-assisted laser desorption/ionization (MALDI)-based technique for characterizing the equilibrium unfolding/refolding properties of proteins and protein-ligand complexes. Here, we describe the application of SUPREX to the thermodynamic analysis of synergistic anion binding to iron-loaded ferric-binding protein (Fe(3+)FbpA-X, X = synergistic anion). The in vivo function of FbpA is to transport unchelated Fe(3+) across the periplasmic space of certain Gram-negative bacteria, a process that requires simultaneous binding of a synergistic anion.

View Article and Find Full Text PDF