Publications by authors named "Miesha Farahmand"

The genetic disease cystic fibrosis (CF) results when mutations in the gene for the anion channel CFTR reduce CFTR's activity below a critical level. CFTR activity = N·PO·γ (number of channels x open probability x channel conductance). Small molecules are now available that partially restore CFTR function with dramatic improvements in health of CF subjects.

View Article and Find Full Text PDF

To determine if ivacaftor (Kalydeco) influences non-CF human CFTR function in vivo, we measured CFTR-dependent (C-sweat) and CFTR-independent (M-sweat) rates from multiple identified sweat glands in 8 non-CF adults. The two types of sweating were stimulated sequentially with intradermal injections of appropriate reagents; each gland served as its own control via alternating off-on drug tests on both arms, given at weekly intervals with 3 off and 3 on tests per subject. We compared drug effects on C-sweating stimulated by either high or low concentrations of β-adrenergic cocktail, and on methacholine-stimulated M-sweating.

View Article and Find Full Text PDF

Beta-adrenergically-stimulated sweat rates determined by evaporimetry or by sweat bubble imaging are useful for measuring CFTR function because they provide a near-linear readout across almost the full range of CFTR function. They differentiate cystic fibrosis (CF) subjects from CF carriers and carriers from controls. However, evaporimetry, unlike bubble imaging, appears to be unable to detect improved levels of CFTR function in G551D subjects taking the CFTR modulator ivacaftor.

View Article and Find Full Text PDF