Publications by authors named "Miersch S"

Synthetic antibody libraries have been used extensively to isolate and optimize antibodies. To generate these libraries, the immunological diversity and the antibody framework(s) that supports it outside of the binding regions are carefully designed/chosen to ensure favorable functional and biophysical properties. In particular, minimalist, single-framework synthetic libraries pioneered by our group have yielded a vast trove of antibodies to a broad array of antigens.

View Article and Find Full Text PDF
Article Synopsis
  • * Researchers engineered mouse embryonic stem cells to produce "neutralizing biologics" (nBios) that effectively neutralize SARS-CoV-2 and can be transplanted to provide long-term immune protection.
  • * The study demonstrates that these genetically modified cells can secrete potent nBios over time, suggesting their potential for developing safe, long-lasting cell therapies for viral immunity in the future.
View Article and Find Full Text PDF

The currently available nebulization devices have a slow aerosol flow and produce vapor with large microdrops. Improved devices that achieve higher airflow and produce smaller microdrops are needed to improve the clinical care of patients. To address this critical need, we developed a novel system for the molecular vaporization of liquids.

View Article and Find Full Text PDF

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has made it clear that combating coronavirus outbreaks benefits from a combination of vaccines and therapeutics. A promising drug target common to all coronaviruses-including SARS-CoV, MERS-CoV, and SARS-CoV-2-is the papain-like protease (PLpro). PLpro cleaves part of the viral replicase polyproteins into non-structural protein subunits, which are essential to the viral replication cycle.

View Article and Find Full Text PDF

Understanding the antigenic signatures of all human coronaviruses (HCoVs) Spike (S) proteins is imperative for pan-HCoV epitopes identification and broadly effective vaccine development. To depict the currently elusive antigenic signatures of α-HCoVs S proteins, we isolated a panel of antibodies against the HCoV-229E S protein and characterized their epitopes and neutralizing potential. We found that the N-terminal domain of HCoV-229E S protein is antigenically dominant wherein an antigenic supersite is present and appears conserved in HCoV-NL63, which holds potential to serve as a pan-α-HCoVs epitope.

View Article and Find Full Text PDF
Article Synopsis
  • The SARS-CoV-2 pandemic has spurred interest in understanding coronaviruses and developing relevant reagents for research and treatment.
  • The study details the biochemical evaluation of monoclonal antibodies that were synthetically created and identified using phage-display techniques against SARS-CoV-2 proteins.
  • Binding kinetics of these antibodies were assessed using various methods, ensuring their effectiveness and reliability through comparisons with control proteins and the purified virus.
View Article and Find Full Text PDF
Article Synopsis
  • COVID-19 transmission has worsened due to concerning variants (VoC) containing mutations in the spike protein, affecting therapeutic response.
  • Researchers isolated and optimized 16-residue peptides that bind to the spike protein, enhancing the effectiveness of neutralizing antibodies (nAbs) by over 100-fold.
  • This approach allows for a significant increase in the neutralization potency of nAbs, including against resistant variants like Omicron, suggesting a promising modular strategy for better COVID-19 therapeutics.
View Article and Find Full Text PDF
Article Synopsis
  • Neutralizing antibodies targeting the SARS-CoV-2 spike protein are authorized for COVID-19 treatment, but new variants necessitate alternative therapies.
  • Researchers developed a new tetravalent neutralizing antibody (nAb) that combines antigen-binding sites from two different nAbs, allowing for efficient production and high yield.
  • This tetravalent nAb binds significantly tighter to the spike protein than traditional bivalent antibodies and effectively neutralizes various SARS-CoV-2 viral forms, showing promise as a superior treatment option.
View Article and Find Full Text PDF

Each year, thousands of people fall victim to envenomings caused by cobras. These incidents often result in death due to paralysis caused by α-neurotoxins from the three-finger toxin (3FTx) family, which are abundant in elapid venoms. Due to their small size, 3FTxs are among the snake toxins that are most poorly neutralized by current antivenoms, which are based on polyclonal antibodies of equine or ovine origin.

View Article and Find Full Text PDF

The global health emergency for SARS-CoV-2 (COVID-19) created an urgent need to develop new treatments and therapeutic drugs. In this study, we tested, for the first time on human cells, a new tetravalent neutralizing antibody (15033-7) targeting Spike protein and a synthetic peptide homologous to dipeptidyl peptidase-4 (DPP4) receptor on host cells. Both could represent powerful immunotherapeutic candidates for COVID-19 treatment.

View Article and Find Full Text PDF
Article Synopsis
  • * Researchers have developed 18 specific monoclonal antibodies targeting nine different SARS-CoV-2 proteins using an antibody engineering platform.
  • * The study reports on the characterization of these antibodies, which could improve research into host-viral interactions and the mechanisms of SARS-CoV-2 infection.
View Article and Find Full Text PDF

Rift Valley fever virus (RVFV) is a zoonotic pathogen with pandemic potential. RVFV entry is mediated by the viral glycoprotein (Gn), but host entry factors remain poorly defined. Our genome-wide CRISPR screen identified low-density lipoprotein receptor-related protein 1 (mouse Lrp1/human LRP1), heat shock protein (Grp94), and receptor-associated protein (RAP) as critical host factors for RVFV infection.

View Article and Find Full Text PDF

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in a global pandemic causing over 195 million infections and more than 4 million fatalities as of July 2021.To date, it has been demonstrated that a number of mutations in the spike glycoprotein (S protein) of SARS-CoV-2 variants of concern abrogate or reduce the neutralization potency of several therapeutic antibodies and vaccine-elicited antibodies. Therefore, the development of additional vaccine platforms with improved supply and logistic profile remains a pressing need.

View Article and Find Full Text PDF

Neutralizing antibodies (nAbs) hold promise as therapeutics against COVID-19. Here, we describe protein engineering and modular design principles that have led to the development of synthetic bivalent and tetravalent nAbs against SARS-CoV-2. The best nAb targets the host receptor binding site of the viral S-protein and tetravalent versions block entry with a potency exceeding bivalent nAbs by an order of magnitude.

View Article and Find Full Text PDF

Metal-chelating polymer-based radioimmunoconjugates (RICs) are effective agents for radioimmunotherapy but are currently limited by nonspecific binding and off-target organ uptake. Nonspecific binding appears after conjugation of the polymer to the antibody and may be related to random lysine conjugation since the polymers themselves do not bind to cells. To investigate the role of conjugation sites on nonspecific binding of polymer RICs, we developed a microbial transglutaminase reaction to prepare site-specific antibody-polymer conjugates.

View Article and Find Full Text PDF

COVID-19 is a respiratory illness caused by a novel coronavirus called SARS-CoV-2. The viral spike (S) protein engages the human angiotensin-converting enzyme 2 (ACE2) receptor to invade host cells with ~10-15-fold higher affinity compared to SARS-CoV S-protein, making it highly infectious. Here, we assessed if ACE2 polymorphisms can alter host susceptibility to SARS-CoV-2 by affecting this interaction.

View Article and Find Full Text PDF

Recombinant antibodies (Abs) against the SARS-CoV-2 virus hold promise for treatment of COVID-19 and high sensitivity and specific diagnostic assays. Here, we report engineering principles and realization of a Protein-fragment Complementation Assay (PCA) detector of SARS-CoV-2 antigen by coupling two Abs to complementary N- and C-terminal fragments of the reporter enzyme Gaussia luciferase (Gluc). Both Abs display comparably high affinities for distinct epitopes of viral Spike (S)-protein trimers.

View Article and Find Full Text PDF

Neutralizing antibodies (nAbs) hold promise as effective therapeutics against COVID-19. Here, we describe protein engineering and modular design principles that have led to the development of synthetic bivalent and tetravalent nAbs against SARS-CoV-2. The best nAb targets the host receptor binding site of the viral S-protein and its tetravalent versions can block entry with a potency that exceeds the bivalent nAbs by an order of magnitude.

View Article and Find Full Text PDF

Antibody-based interventions against SARS-CoV-2 could limit morbidity, mortality, and possibly transmission. An anticipated correlate of such countermeasures is the level of neutralizing antibodies against the SARS-CoV-2 spike protein, which engages with host ACE2 receptor for entry. Using an infectious molecular clone of vesicular stomatitis virus (VSV) expressing eGFP as a marker of infection, we replaced the glycoprotein gene (G) with the spike protein of SARS-CoV-2 (VSV-eGFP-SARS-CoV-2) and developed a high-throughput-imaging-based neutralization assay at biosafety level 2.

View Article and Find Full Text PDF

Antibody-based interventions against SARS-CoV-2 could limit morbidity, mortality, and possibly disrupt epidemic transmission. An anticipated correlate of such countermeasures is the level of neutralizing antibodies against the SARS-CoV-2 spike protein, yet there is no consensus as to which assay should be used for such measurements. Using an infectious molecular clone of vesicular stomatitis virus (VSV) that expresses eGFP as a marker of infection, we replaced the glycoprotein gene (G) with the spike protein of SARS-CoV-2 (VSV-eGFP-SARS-CoV-2) and developed a high-throughput imaging-based neutralization assay at biosafety level 2.

View Article and Find Full Text PDF

Antibody-based interventions against SARS-CoV-2 could limit morbidity, mortality, and possibly disrupt epidemic transmission. An anticipated correlate of such countermeasures is the level of neutralizing antibodies against the SARS-CoV-2 spike protein, yet there is no consensus as to which assay should be used for such measurements. Using an infectious molecular clone of vesicular stomatitis virus (VSV) that expresses eGFP as a marker of infection, we replaced the glycoprotein gene (G) with the spike protein of SARS-CoV-2 (VSV-eGFP-SARS-CoV-2) and developed a high-throughput imaging-based neutralization assay at biosafety level 2.

View Article and Find Full Text PDF

The interleukin-18 subfamily belongs to the interleukin-1 family and plays an important role in modulating innate and adaptive immune responses. Dysregulation of IL-18 has been implicated in or correlated with numerous diseases, including inflammatory diseases, autoimmune disorders, and cancer. Thus, blockade of IL-18 signaling may offer therapeutic benefits in many pathological settings.

View Article and Find Full Text PDF

Objectives: The aim of this study was to analyse the impact of different clinical conditioning approaches and an ammonium polyfluoride- and trimethoxysilylpropyl methacrylate-based experimental primer for intraoral luting of buccal tubes on silica-based ceramic surfaces.

Materials And Methods: A total of 60 leucite-reinforced glass ceramic molar crowns were conditioned using different methods (n = 10): I-roughening, hydrofluoric acid, silane; II-roughening, silane; III-roughening, experimental coupling agent; IV-experimental coupling agent; V-roughening; VI-no treatment. A buccal tube was adhesively luted to the ceramic surface.

View Article and Find Full Text PDF

Multidrug-resistant gram-negative bacteria infection is particularly severe within the designated ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species), which underscores the urgent need to explore alternative therapeutic strategies. The type III secretion system (T3SS) is considered to be a key virulence factor in many gram-negative bacteria, and T3SS is in turn regulated by SpuE in P. aeruginosa, which is a spermidine binding protein from an ATP-binding cassette transporter family and highly conserved within ESKAPE pathogens.

View Article and Find Full Text PDF

Background And Aims: In oilseed rape (Brassica napus) semi-dwarf hybrid varieties from crosses between bzh dwarf and normal-type lines are of increasing interest. They have improved nitrogen (N) uptake, N-utilization and N-use efficiency compared to normal types. This study aimed to elucidate whether these N-related effects can be explained by the bzh shoot growth-type alone or also by differences in root traits.

View Article and Find Full Text PDF