Publications by authors named "Mierke D"

Cellular FLICE-like inhibitory protein (cFLIP) is a member of the Death Domain superfamily with pivotal roles in many cellular processes and disease states, including cancer and autoimmune disorders. In the context of the death-inducing signaling complex (DISC), cFLIP isoforms regulate extrinsic apoptosis by controlling procaspase-8 activation. The function of cFLIP is mediated through a series of protein-protein interactions, engaging the two N-terminal death effector domains (DEDs).

View Article and Find Full Text PDF

NEMO is a scaffolding protein which plays an essential role in the NF-κB pathway by assembling the IKK-complex with the kinases IKKα and IKKβ. Upon activation, the IKK complex phosphorylates the IκB molecules leading to NF-κB nuclear translocation and activation of target genes. Inhibition of the NEMO/IKK interaction is an attractive therapeutic paradigm for the modulation of NF-κB pathway activity, making NEMO a target for inhibitors design and discovery.

View Article and Find Full Text PDF

NEMO is an essential component in the activation of the canonical NF-κB pathway and exerts its function by recruiting the IκB kinases (IKK) to the IKK complex. Inhibition of the NEMO/IKKs interaction is an attractive therapeutic paradigm for diseases related to NF-κB mis-regulation, but a difficult endeavor because of the extensive protein-protein interface. Here we report the high-resolution structure of the unbound IKKβ-binding domain of NEMO that will greatly facilitate the design of NEMO/IKK inhibitors.

View Article and Find Full Text PDF

In vascular plants the cell-to-cell interactions coordinating morphogenetic and physiological processes are mediated, among others, by the action of hormones, among which also short mobile peptides were recognized to have roles as signals. Such peptide hormones (PHs) are involved in defense responses, shoot and root growth, meristem homeostasis, organ abscission, nutrient signaling, hormone crosstalk and other developmental processes and act as both short and long distant ligands. In this work, the function of , a peach gene encoding a ROOT GROWTH FACTOR/GOLVEN-like PH expressed in mesocarp at the onset of ripening, was investigated for its role in mediating an auxin-ethylene crosstalk.

View Article and Find Full Text PDF

AphB is a LysR-type transcriptional regulator (LTTR) that cooperates with a second transcriptional activator, AphA, at the tcpPH promoter to initiate expression of the virulence cascade in Vibrio cholerae. Because it is not yet known whether AphB responds to a natural ligand in V. cholerae that influences its ability to activate transcription, we used a computational approach to identify small molecules that influence its activity.

View Article and Find Full Text PDF

Overexpression of the cellular FLICE-like inhibitory protein (cFLIP) has been reported in a number of tumor types. As an inactive procaspase-8 homologue, cFLIP is recruited to the intracellular assembly known as the Death Inducing Signaling Complex (DISC) where it inhibits apoptosis, leading to cancer cell proliferation. Here we characterize the molecular details of the interaction between cFLIPL and calmodulin, a ubiquitous calcium sensing protein.

View Article and Find Full Text PDF

INF2 (inverted formin 2) is a formin protein with unique biochemical effects on actin. In addition to the common formin ability to accelerate actin nucleation and elongation, INF2 can also sever filaments and accelerate their depolymerization. Although we understand key attributes of INF2-mediated severing, we do not understand the mechanism by which INF2 accelerates depolymerization subsequent to severing.

View Article and Find Full Text PDF

A monocyclic compound 3 (3-ethynyl-3-methyl-6-oxocyclohexa-1,4-dienecarbonitrile) is a highly reactive Michael acceptor leading to reversible adducts with nucleophiles, which displays equal or greater potency than the pentacyclic triterpenoid CDDO in inflammation and carcinogenesis related assays. Recently, reversible covalent drugs, which bind with protein targets but not permanently, have been gaining attention because of their unique features. To explore such reversible covalent drugs, we have synthesized monocyclic, bicyclic, and tricyclic compounds containing 3 as an electrophilic fragment and evaluated them as activators of the Keap1/Nrf2/ARE pathway and inhibitors of iNOS.

View Article and Find Full Text PDF

Recombinant soluble TRAIL and agonistic antibodies against TRAIL receptors (DR4 and DR5) are currently being created for clinical cancer therapy, due to their selective killing of cancer cells and high safety characteristics. However, resistance to TRAIL and other targeted therapies is an important issue facing current cancer research field. An attractive strategy to sensitize resistant malignancies to TRAIL-induced cell death is the design of small molecules that target and promote caspase 8 activation.

View Article and Find Full Text PDF

Migration of vascular smooth muscle cells is a key element in remodeling during pulmonary arterial hypertension (PAH). We are observing key alterations in the migratory characteristics of human pulmonary artery smooth muscle cells (HPASMC) isolated from transplanted lungs of subjects with PAH. Using wound migration and barrier removal assays, we demonstrate that the PAH cells migrate under quiescent growth conditions and in the absence of pro-migratory factors such as platelet derived growth factor (PDGF).

View Article and Find Full Text PDF

The JC polyomavirus (JCPyV) infects approximately 50% of the human population. In healthy individuals, the infection remains dormant and asymptomatic, but in immuno-suppressed patients, it can cause progressive multifocal leukoencephalopathy (PML), a potentially fatal demyelinating disease. Currently, there are no drugs against JCPyV infection nor for the treatment of PML.

View Article and Find Full Text PDF

The regulation of the cell cycle by the ubiquitin-proteasome system is dependent on the activity of E3 ligases. Skp2 (S-phase kinase associated protein-2) is the substrate recognition subunit of the E3 ligase that ubiquitylates the cell cycle inhibitors p21(cip1) and p27(kip1) thus promoting cell cycle progression. Increased expression of Skp2 is frequently observed in diseases characterized by excessive cell proliferation, such as cancer and neointima hyperplasia.

View Article and Find Full Text PDF

Reagents that target protein-protein interactions to rewire signaling are of great relevance in biological research. Computational protein design may offer a means of creating such reagents on demand, but methods for encoding targeting selectivity are sorely needed. This is especially challenging when targeting interactions with ubiquitous recognition modules--for example, PDZ domains, which bind C-terminal sequences of partner proteins.

View Article and Find Full Text PDF

Cell-penetrating peptide (CPP) intracellular delivery of receptor signaling motifs provides an opportunity to regulate specific receptor tyrosine kinase signal transductions. We targeted tyrosine residues Y740 and Y751 of the PDGF receptor β (PDGFRβ) and Y1175 of the VEGF receptor 2 (VEGFR2). The Y740 and Y751 motifs activated ERK and Akt, while the Y1175 motif activated ERK.

View Article and Find Full Text PDF

NEMO is a scaffolding protein that, together with the catalytic subunits IKKα and IKKβ, plays an essential role in the formation of the IKK complex and in the activation of the canonical NF-κB pathway. Rational drug design targeting the IKK-binding site on NEMO would benefit from structural insight, but to date, the determination of the structure of unliganded NEMO has been hindered by protein size and conformational heterogeneity. Here we show how the utilization of a homodimeric coiled-coil adaptor sequence stabilizes the minimal IKK-binding domain NEMO(44-111) and furthers our understanding of the structural requirements for IKK binding.

View Article and Find Full Text PDF

We have identified a series of small molecules that bind to the canonical peptide binding groove of the PDZ1 domain of NHERF1 and effectively compete with the association of the C-terminus of the parathyroid hormone 1 receptor (PTH1R). Employing nuclear magnetic resonance and molecular modeling, we characterize the mode of binding that involves the GYGF loop important for the association of the C-terminus of PTH1R. We demonstrate that the common core of the small molecules binds to the PDZ1 domain of NHERF1 and displaces a (15)N-labeled peptide corresponding to the C-terminus of PTH1R.

View Article and Find Full Text PDF

We present a versatile method to characterize ATPase and kinase activities and discover new inhibitors of these proteins. The proton NMR-based assay directly monitors ATP turnover and is easy to implement, requires no additional reagents and can potentially be applied to GTP. We validated the method's accuracy, applied it to the monitoring of ATP turnover by actin and to the screening of ATPase inhibitors, and showed that it is also applicable for the monitoring of GTP hydrolysis.

View Article and Find Full Text PDF

JCPyV and BKPyV are common human polyomaviruses that cause lifelong asymptomatic persistent infections in their hosts. In immunosuppressed individuals, increased replication of JCPyV and BKPyV cause significant disease. JCPyV causes a fatal and rapidly progressing demyelinating disease known as progressive multifocal leukoencephalopathy.

View Article and Find Full Text PDF

We designed and characterized a soluble mimic of the parathyroid hormone (PTH) receptor (PTH1R) that incorporates the N-terminus and third extracellular loop of PTH1R, important for ligand binding. The engineered receptor (PTH1R-NE3) was conceived to enable easy production and the use of standard biochemical and biophysical assays for the screening of competitive antagonists of PTH. We show that PTH1R-NE3 is folded, thermodynamically stable and selectively binds PTH.

View Article and Find Full Text PDF

Cell permeable peptides (CPP) aid cellular uptake of targeted cargo across the hydrophobic plasma membrane. CPP-mediated cargo delivery of receptor signaling motifs provides an opportunity to regulate specific receptor initiated signaling cascades. Both endothelin-1 receptors, ETA and ETB, have been targets of antagonist therapies for individuals with pulmonary arterial hypertension (PAH).

View Article and Find Full Text PDF

One of the objectives in the development of effective cancer therapy is induction of tumor-selective cell death. Toward this end, we have identified a small peptide that, when introduced into cells via a TAT cell-delivery system, shows a remarkably potent cytoxicity in a variety of cancer cell lines and inhibits tumor growth in vivo, whereas sparing normal cells and tissues. This fusion peptide was named killerFLIP as its sequence was derived from the C-terminal domain of c-FLIP, an anti-apoptotic protein.

View Article and Find Full Text PDF

The parathyroid hormone, PTH, is responsible for calcium and phosphate ion homeostasis in the body. The first 34 amino acids of the peptide maintain the biological activity of the hormone and is currently marketed for calcium imbalance disorders. Although several methods for the production of recombinant PTH(1-34) have been reported, most involve the use of cleavage conditions that result in a modified peptide or unfavorable side products.

View Article and Find Full Text PDF

The macrophage is essential to the innate immune response, but also contributes to human disease by aggravating inflammation. Under severe inflammation, macrophages and other immune cells over-produce immune mediators, including vascular endothelial growth factor (VEGF). The VEGF protein stimulates macrophage activation and induces macrophage migration.

View Article and Find Full Text PDF

Messenger RNA binding proteins control post-transcriptional gene expression of targeted mRNAs. The RGG (arginine-glycine-glycine) domain of the AUF1/hnRNP-D mRNA binding protein is a regulatory region that is essential for protein function. The AUF1-RGG peptide, modeled on the RGG domain of AUF1, represses expression of the macrophage cytokine, VEGF.

View Article and Find Full Text PDF

The dimerization of the G protein-coupled receptors for endothelin-1 (ET-1), endothelin A receptor (ETA) and endolethin B receptor (ETB), is well established. However, the signaling consequences of the homodimerization and heterodimerization of ETA and ETB is not well understood. Here, we demonstrate that peptides derived from the C-termini of these receptors regulate the signaling capacity of ET-1.

View Article and Find Full Text PDF