This paper presents an approach to apply aquatic passive sampling (PS) in regulatory chemical water quality monitoring in Europe. Absorption-based passive sampling is well developed and suitable for the sampling of hydrophobic chemicals, some of which are European Water Framework Directive priority substances with Environmental Quality Standards (EQS) derived for biota. Considering a chemical activity approach to chemical risk assessment, we propose equilibrium concentration in lipids (from passive water sampling) as a reference value for measured concentrations in biota.
View Article and Find Full Text PDFVarious industries produce a myriad of synthetic molecules used to satisfy our needs, but all these molecules are likely to reach aquatic environments. The number of organic contaminants found in rivers and lakes continues to rise, and part of this contamination gets transferred into sediments. Analytical methods to detect problematic substances in the environment often use mass spectrometry coupled with chromatography.
View Article and Find Full Text PDFThe quality of chemical analysis is an important aspect of passive sampling-based environmental assessments. The present study reports on a proficiency testing program for the chemical analysis of hydrophobic organic compounds in silicone and low-density polyethylene (LDPE) passive samplers and hydrophilic compounds in polar organic chemical integrative samplers. The median between-laboratory coefficients of variation (CVs) of hydrophobic compound concentrations in the polymer phase were 33% (silicone) and 38% (LDPE), similar to the CVs obtained in four earlier rounds of this program.
View Article and Find Full Text PDFDiffuse and point sources of dissolved organic matter (DOM) in streams influence its composition, interactions and fate in the aquatic ecosystem. These inputs can be very numerous at the scale of a watershed, and their identification remains a challenge, especially for diffuse sources related to land use. The complexity of the transfer mechanisms and the reactivity of DOM throughout the soil-water column continuum raise questions about the sampling of diffuse sources in watercourses.
View Article and Find Full Text PDFThe Polar Organic Chemical Integrative Samplers (POCIS) is the most widely used passive sampler for hydrophilic compounds, but unsuitable for certain ionic organic contaminants. The Diffusive Gradient in Thin-Film technique (o-DGT) has shown positive results for both ionic and hydrophilic compounds. However, a calibration step is now needed to evaluate kinetic constant of accumulation for a wide range of molecules.
View Article and Find Full Text PDFKarst aquifers are an important water resource worldwide particularly exposed to anthropogenic pollution, including antibiotic-resistance. The release of antibiotic-resistant bacterial pathogens in the environment is a major public health challenge worldwide. In this One Health study, we aimed to determine the effect of karst on antibiotic-resistant bacteria.
View Article and Find Full Text PDFROP GTPases coordinate the complex morphogenesis of leaf pavement cells. Four new studies reveal how ROP activity is regulated by both activating and inhibitory proteins to orchestrate cell lobe formation in response to local extracellular cues.
View Article and Find Full Text PDFIn an effort to support European Union Water Framework Directive goals, we have set up a national demonstrator project to identify the advantages and limitations of passive samplers for regulatory monitoring of polar contaminants in surface waters. Here we carried out successive 14 day-deployments of polar organic chemical integrative samplers (POCIS) for one year at three sites. In parallel, we used the passive sampler deployment/retrieval operations to collect spot water samples for comparative analysis.
View Article and Find Full Text PDFThe diffusive gradient in thin film technique was recently adapted to organic compounds. The diffusional coefficient (D) is a key parameter needed to calculate the time-weighted average concentration. In this study, two methods are used for D measurement in two gels (agarose and polyacrylamide): the diffusion cell method (D) and the slice stacking method (D).
View Article and Find Full Text PDFNon-target analysis (NTA) employing high-resolution mass spectrometry is a commonly applied approach for the detection of novel chemicals of emerging concern in complex environmental samples. NTA typically results in large and information-rich datasets that require computer aided (ideally automated) strategies for their processing and interpretation. Such strategies do however raise the challenge of reproducibility between and within different processing workflows.
View Article and Find Full Text PDFPharmaceutical industry effluents are complex and highly variable in time. Assessing the efficiency of a pharmaceutical industry wastewater treatment plant (WWTP) and the resulting decrease in effluent toxicity and ecological risk is thus not straightforward. We set up an original in situ pilot directly connected to a pharmaceutical WWTP to monitor the chronic toxicity of successive effluents using natural periphytic biofilms.
View Article and Find Full Text PDFMicropollutants such as pharmaceuticals and pesticides are still found in treated municipal effluent and are discharged into the natural environment. Natural direct photodegradation may be one pathway for removing these micropollutants in treatment processes such as free-water surface constructed wetlands (CW). This work was set out to evaluate the half-life (t) of direct photodegradation of 36 micropollutants under controlled conditions of light exposure close to solar radiation.
View Article and Find Full Text PDFMicropollutants like pharmaceuticals, hormones and pesticides are still found in treated municipal wastewater. An effective way to degrade micropollutants is to use oxidants such as ozone or hydroxyl radicals. We designed an innovative experimental protocol combining batch experiments and a study of a full-scale WWTP to understand and predict the removal via ozonation of typical micropollutants present in secondary treated effluents.
View Article and Find Full Text PDFLand-based micropollutants are the largest pollution source of the marine environment acting as the major large-scale chemical sink. Despite this, there are few comprehensive datasets for estimating micropollutant fluxes released to the sea from river mouths. Hence, their dynamics and drivers remain poorly understood.
View Article and Find Full Text PDFIn freshwater environments, microbial assemblages attached to submerged substrates play an essential role in ecosystem processes such as primary production, supported by periphyton, or organic matter decomposition, supported by microbial communities attached to leaf litter or sediments. These microbial assemblages, also called biofilms, are not only involved in nutrients fluxes but also in contaminants dynamics. Biofilms can accumulate metals and organic contaminants transported by the water flow and/or adsorbed onto substrates.
View Article and Find Full Text PDFThe Rhône River (France) has been used for energy production for decades and 21 dams have been built. To avoid problems due to sediment storage, dam flushing operations are periodically organized. The impacts of such operations on suspended particulate matter (SPM) dynamics (resuspension and fluxes) and quality (physico-chemical characteristics and contamination), were investigated during a flushing operation performed in June 2012 on 3 major dams from the Upper Rhône River.
View Article and Find Full Text PDFMercury (Hg) is a pollutant of global concern owing to its great toxicity even at very low concentrations. Its toxicity depends on its chemical forms evidencing the importance to study its speciation. Dissolved Hg (Hg) and methylmercury (MeHg) monitoring in surface freshwaters represents a great challenge because of their very low concentrations and substantial temporal variability at different timescales.
View Article and Find Full Text PDFMicropollutants such as pharmaceutical products and pesticides are still present in treated wastewater. Several of these compounds are photoactive, either by direct or indirect photodegradation. An innovative on-site experimental protocol was designed to investigate the contribution of photodegradation processes to eliminate micropolluants in constructed wetland (CW).
View Article and Find Full Text PDFRho guanosine triphosphatases (GTPases) are master regulators of cell signaling, but how they are regulated depending on the cellular context is unclear. We found that the phospholipid phosphatidylserine acts as a developmentally controlled lipid rheostat that tunes Rho GTPase signaling in Live superresolution single-molecule imaging revealed that the protein Rho of Plants 6 (ROP6) is stabilized by phosphatidylserine into plasma membrane nanodomains, which are required for auxin signaling. Our experiments also revealed that the plasma membrane phosphatidylserine content varies during plant root development and that the level of phosphatidylserine modulates the quantity of ROP6 nanoclusters induced by auxin and hence downstream signaling, including regulation of endocytosis and gravitropism.
View Article and Find Full Text PDFMonitoring hydrophobic contaminants in surface freshwaters requires measuring contaminant concentrations in the particulate fraction (sediment or suspended particulate matter, SPM) of the water column. Particle traps (PTs) have been recently developed to sample SPM as cost-efficient, easy to operate and time-integrative tools. But the representativeness of SPM collected with PTs is not fully understood, notably in terms of grain size distribution and particulate organic carbon (POC) content, which could both skew particulate contaminant concentrations.
View Article and Find Full Text PDFThis paper covers the pitfalls, recommendations and a new methodology for assessing micropollutant removal efficiencies in wastewater treatment plants. The proposed calculation rules take into account the limit of quantification and the analytical and sampling uncertainty of measured concentrations. We identified six cases for which a removal efficiency value is reliable and four other cases where result is highly variable (uncertain) due to very low or unquantified concentrations in effluent or when the influent-effluent concentrations differential is below the measurement uncertainty.
View Article and Find Full Text PDFThis study gives a full overview of the chemical oxidation by ozone of selected xenobiotics usually present in effluents of conventional wastewater treatment plants. A qualitative and quantitative overview of literature data was made, and describes the ozonation efficiency and processes for the elimination of 12 xenobiotics (pesticides and pharmaceuticals). A database was built, compiling literature results of experimental ozonation assays in laboratory and real-scale conditions.
View Article and Find Full Text PDFWater is a vital resource for natural ecosystems and human life, and assuring a high quality of water and protecting it from chemical contamination is a major societal goal in the European Union. The Water Framework Directive (WFD) and its daughter directives are the major body of legislation for the protection and sustainable use of European freshwater resources. The practical implementation of the WFD with regard to chemical pollution has faced some challenges.
View Article and Find Full Text PDF