Land plants have evolved many systems to adapt to a wide range of environmental stresses. In seed plants, oligogalactolipid synthesis is involved in tolerance to freezing and dehydration, but it has not been analyzed in non-vascular plants. Here we analyzed trigalactosyldiacylglycerol (TGDG) synthesis in Marchantia polymorpha.
View Article and Find Full Text PDFAnisotropic cell expansion is crucial for the morphogenesis of land plants, as cell migration is restricted by the rigid cell wall. The anisotropy of cell expansion is regulated by mechanisms acting on the deposition or modification of cell wall polysaccharides. Besides the polysaccharide components in the cell wall, a layer of hydrophobic cuticle covers the outer cell wall and is subjected to tensile stress that mechanically restricts cell expansion.
View Article and Find Full Text PDFThe phosphatidic acid phosphohydrolase of Marchantia polymorpha modulates plastid glycolipid synthesis through the ER pathway and is essential for normal plant development regardless of nutrient availability. Membrane lipid remodeling is one of the strategies plant cells use to secure inorganic phosphate (Pi) for plant growth, but many aspects of the molecular mechanism and its regulation remain unclear. Here we analyzed membrane lipid remodeling using a non-vascular plant, Marchantia polymorpha.
View Article and Find Full Text PDFThe phytohormone auxin affects numerous processes in land plants. The central auxin signaling machinery, called the nuclear auxin pathway, is mediated by its pivotal receptor named TRANSPORT INHIBITOR RESPONSE 1/AUXIN SIGNALING F-BOX (TIR1/AFB). The nuclear auxin pathway is widely conserved in land plants, but auxin also accumulates in various algae.
View Article and Find Full Text PDFKODA (9-hydroxy-10-oxo-12(Z),15(Z)-octadecadienoic acid) is a plant oxylipin involved in recovery from stress. As an agrichemical, KODA helps maintain crop production under various environmental stresses. In plants, KODA is synthesized from α-linolenic acids via 9-lipoxygenase (9-LOX) and allene oxide synthase (AOS), although the amount is usually low, except in the free-floating aquatic plant Lemna paucicostata.
View Article and Find Full Text PDFMonogalactosyldiacylglycerol (MGDG), the most abundant lipid in thylakoid membranes, is involved in photosynthesis and chloroplast development. MGDG lipase has an important role in lipid remodeling in Chlamydomonas reinhardtii. However, the process related to turnover of the lysogalactolipid that results from MGDG degradation, monogalactosylmonoacylglycerol (MGMG), remains to be clarified.
View Article and Find Full Text PDFInorganic phosphate (Pi) and nitrogen (N) are essential nutrients for plant growth. We found that a five-fold oversupply of nitrate rescues Arabidopsis (Arabidopsis thaliana) plants from Pi-starvation stress. Analyses of transgenic plants that overexpressed GFP-AUTOPHAGY8 showed that an oversupply of nitrate induced autophagy flux under Pi-depleted conditions.
View Article and Find Full Text PDFMembrane lipid remodeling under phosphate (Pi) limitation, a process that replaces structural membrane phospholipids with nonphosphorus lipids, is a widely observed adaptive response in plants and algae. Here, we identified the transcription factor phosphorus starvation response 1 (NoPSR1) as an indispensable player for regulating membrane lipid conversion during Pi starvation in the microalga Nannochloropsis oceanica. Knocking out NoPSR1 scarcely perturbed membrane lipid composition under Pi-sufficient conditions but significantly impaired dynamic alteration in membrane lipids during Pi starvation.
View Article and Find Full Text PDFMonogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG) are the major components of thylakoid membranes and well-conserved from cyanobacteria to chloroplasts. However, cyanobacteria and chloroplasts synthesize these galactolipids using different pathways and enzymes, but they are believed to share a common ancestor. This fact implies that there was a replacement of the cyanobacterial galactolipid biosynthesis pathway during the evolution of a chloroplast.
View Article and Find Full Text PDFThylakoid membranes, the site of photochemical and electron transport reactions of oxygenic photosynthesis, are composed of a myriad of proteins, cofactors including pigments, and glycerolipids. In the non-diazotrophic cyanobacterium sp. PCC 6803, the size and function of thylakoid membranes are reduced under nitrogen (N) starvation but are quickly recovered after N addition to the starved cells.
View Article and Find Full Text PDFThe elucidation of lipid metabolism in microalgae has attracted broad interest, as their storage lipid, triacylglycerol (TAG), can be readily converted into biofuel via transesterification. TAG accumulates in the form of oil droplets, especially when cells undergo nutrient deprivation, such as for nitrogen (N), phosphorus (P), or sulfur (S). TAG biosynthesis under N-deprivation has been comprehensively studied in the model microalga Chlamydomonas reinhardtii, during which TAG accumulates dramatically.
View Article and Find Full Text PDFUnder nutrient starvation conditions, algae and seed-plant cells accumulate carbon metabolites such as storage lipids, triacylglycerols (TAGs), and starches. Recent research has suggested the involvement of autophagy in the regulation of carbon metabolites under nutrient starvation. When algae are grown under carbon starvation conditions, such as growth in darkness or in the presence of a photosynthesis inhibitor, lipid droplets are surrounded by phagophores.
View Article and Find Full Text PDFHere we show that accumulation of galactose-containing lipids in plastid membranes in shoots and the other membranes in roots maintains Arabidopsis growth under acidic stress and acidic phosphate deficiency. Soil acidification and phosphate deficiency are closely related to each other in natural environments. In addition to the toxicity of high proton concentrations, acid soil can lead to imbalances of ion availability and nutritional deficiencies, including inorganic phosphate (Pi).
View Article and Find Full Text PDFAliphatic C-H bonds are one of the major organic signatures detected in Proterozoic organic microfossils, and their origin is a topic of interest. To investigate the influence of the presence of silica on the thermal alteration of aliphatic C-H bonds in prokaryotic cells during diagenesis, cyanobacteria Synechocystis sp. PCC6803 were heated at temperatures of 250-450°C.
View Article and Find Full Text PDFDiacylglyceryl--trimethylhomo-Ser (DGTS) is a nonphosphorous, polar glycerolipid that is regarded as analogous to the phosphatidylcholine in bacteria, fungi, algae, and basal land plants. In some species of algae, including the stramenopile microalga , DGTS contains an abundance of eicosapentaenoic acid (EPA), which is relatively scarce in phosphatidylcholine, implying that DGTS has a unique physiological role. In this study, we addressed the role of DGTS in We identified two DGTS biosynthetic enzymes that have distinct domain configurations compared to previously identified DGTS synthases.
View Article and Find Full Text PDFFloods impede gas (O and CO ) exchange between plants and the environment. A mechanism to enhance plant gas exchange under water comprises gas films on hydrophobic leaves, but the genetic regulation of this mechanism is unknown. We used a rice mutant (dripping wet leaf 7, drp7) which does not retain gas films on leaves, and its wild-type (Kinmaze), in gene discovery for this trait.
View Article and Find Full Text PDFMIKC classic (MIKC)-type MADS-box genes encode transcription factors that function in various developmental processes, including angiosperm floral organ identity. Phylogenetic analyses of the MIKC-type MADS-box family, including genes from non-flowering plants, suggest that the increased numbers of these genes in flowering plants is related to their functional divergence; however, their precise functions in non-flowering plants and their evolution throughout land plant diversification are unknown. Here, we show that MIKC-type MADS-box genes in the moss Physcomitrella patens function in two ways to enable fertilization.
View Article and Find Full Text PDFThe Arabidopsis homologs of mammalian lipin, PAH1 and PAH2, are cytosolic phosphatidic acid phosphohydrolases that are involved in phospholipid biosynthesis and are essential for growth under phosphate starvation. Here, double-knockout mutants were found to be hypersensitive to nitrogen (N) starvation, whereas transgenic plants overexpressing PAH1 or PAH2 in the mutant background showed a similar growth phenotype as compared with wild type (WT) under N starvation. The chlorophyll content of was significantly lower than that of WT, whereas the chlorophyll content and photosynthetic activity of the transgenic plants were significantly higher than those of WT under N-depleted conditions.
View Article and Find Full Text PDFKlebsormidium flaccidum is a charophytic alga living in terrestrial and semiaquatic environments. K. flaccidum grows in various habitats, such as low-temperature areas and under desiccated conditions, because of its ability to tolerate harsh environments.
View Article and Find Full Text PDFIn photosynthetic organisms, the photosynthetic membrane constitutes a scaffold for light-harvesting complexes and photosynthetic reaction centers. Three kinds of glycolipids, namely monogalactosyldiacylglycerol, digalactosyldiacylglycerol, and sulfoquinovosyldiacylglycerol, constitute approximately 80-90% of photosynthetic membrane lipids and are well conserved from tiny cyanobacteria to the leaves of huge trees. These glycolipids perform a wide variety of functions beyond biological membrane formation.
View Article and Find Full Text PDFMost microalgae abundantly accumulate lipid droplets (LDs) containing triacylglycerols (TAGs) under several stress conditions, but the underlying molecular mechanism of this accumulation remains unclear. In a recent study, we found that inhibition of TOR (target of rapamycin), a highly conserved protein kinase of eukaryotes, by rapamycin resulted in TAG accumulation in microalgae, indicating that TOR negatively regulates TAG accumulation. Here, we show that formation of intracellular LDs and TAG accumulation were also induced in the unicellular green alga Chlamydomonas reinhardtii after exposure to Torin1 or AZD8055, which are novel TOR inhibitors that inhibit TOR activity in a manner different from rapamycin.
View Article and Find Full Text PDFMicroalgae accumulate triacylglycerols (TAGs) under conditions of nutrient stress. Phosphorus (P) starvation induces the accumulation of TAGs, and the cells under P starvation maintain growth through photosynthesis. We recently reported that P starvation-dependent overexpression of type-2 diacylglycerol acyl-CoA acyltransferase (CrDGTT4) from Chlamydomonas reinhardtii using a sulfoquinovosyldiacylglycerol synthase 2 (SQD2) promoter, which has increased activity during P starvation, enhances TAG accumulation in C.
View Article and Find Full Text PDFInorganic phosphate (Pi) depletion is a serious problem for plant growth. Membrane lipid remodeling is a defense mechanism that plants use to survive Pi-depleted conditions. During Pi starvation, phospholipids are degraded to supply Pi for other essential biological processes, whereas galactolipid synthesis in plastids is up-regulated via the transcriptional activation of monogalactosyldiacylglycerol synthase 3 (MGD3).
View Article and Find Full Text PDF