The metazoan transcription elongation complex (EC) of RNA polymerase II (RNAPII) generally stalls between the transcription start site and the first (+1) nucleosome. This promoter-proximal pausing involves negative elongation factor (NELF), 5,6-dichloro-1-β-d-ribobenzimidazole sensitivity-inducing factor (DSIF), and transcription elongation factor IIS (TFIIS) and is critical for subsequent productive transcription elongation. However, the detailed pausing mechanism and the involvement of the +1 nucleosome remain enigmatic.
View Article and Find Full Text PDFThe 5´-3´ exoribonuclease Rat1/Xrn2 is responsible for the termination of eukaryotic mRNA transcription by RNAPII. Rat1 forms a complex with its partner proteins, Rai1 and Rtt103, and acts as a "torpedo" to bind transcribing RNAPII and dissociate DNA/RNA from it. Here we report the cryo-electron microscopy structures of the Rat1-Rai1-Rtt103 complex and three Rat1-Rai1-associated RNAPII complexes (type-1, type-1b, and type-2) from the yeast, Komagataella phaffii.
View Article and Find Full Text PDFTranscription termination is an essential step in transcription by RNA polymerase (RNAP) and crucial for gene regulation. For many bacterial genes, transcription termination is mediated by the adenosine triphosphate-dependent RNA translocase/helicase Rho, which causes RNA/DNA dissociation from the RNAP elongation complex (EC). However, the structural basis of the interplay between Rho and RNAP remains obscure.
View Article and Find Full Text PDFAcetylated lysine residues (Kac) in histones are recognized by epigenetic reader proteins, such as Yaf9, ENL, AF9, Taf14, and Sas5 (YEATS) domain-containing proteins. Human YEATS domains bind to the acetylated N-terminal tail of histone H3; however, their Kac-binding preferences at the level of the nucleosome are unknown. Through genetic code reprogramming, here, we established a nucleosome core particle (NCP) array containing histones that were acetylated at specific residues and used it to compare the Kac-binding preferences of human YEATS domains.
View Article and Find Full Text PDFCell-free expression has become a highly promising tool for the efficient production of membrane proteins. In this study, we used a dialysis-based Escherichia coli cell-free system for the production of a membrane protein actively integrated into liposomes. The membrane protein was the light-driven proton pump bacteriorhodopsin, consisting of seven transmembrane alpha-helices.
View Article and Find Full Text PDFIn Escherichia coli and other cell-based expression systems, there are critical difficulties in synthesizing membrane proteins, such as the low protein expression levels and the formation of insoluble aggregates. However, structure determinations by X-ray crystallography require the purification of milligram quantities of membrane proteins. In this study, we tried to solve these problems by using cell-free protein expression with an E.
View Article and Find Full Text PDF