Publications by authors named "Midori Takimoto-Kamimura"

Fragment-based drug discovery (FBDD), which involves small compounds <300 Da, has been recognized as one of the most powerful tools for drug discovery. In FBDD, the affinity of hit compounds tends to be low, and the analysis of protein-compound interactions becomes difficult. In an effort to overcome such difficulty, we developed a F-NMR screening method optimizing a F chemical library focusing on highly soluble monomeric molecules.

View Article and Find Full Text PDF

UDP-3-O-acyl-N acetylglucosamine deacetylase (LpxC), Zn metalloenzyme for Gram-negative bacteria is an attractive target for developing novel therapeutic agents. Since LpxC has the similar binding pocket as the human matrix metalloproteinases (MMPs), LpxC inhibitors might also inhibit MMP functions producing side effects in human bodies. Here, we investigated specific interactions between LpxC/MMP and their inhibitors using ab initio molecular simulations to elucidate the reason of selective inhibition for LpxC by non-hydroxamate compounds.

View Article and Find Full Text PDF

Methotrexate (MTX) is an anticancer and anti-rheumatoid arthritis drug that is considered to block nucleotide synthesis and the cell cycle mainly by inhibiting the activity of dihydrofolate reductase (DHFR). Using affinity-matrix technology and X-ray analysis, the present study shows that MTX also interacts with macrophage migration inhibitory factor (MIF). Fragment molecular-orbital calculations quantified the interaction between MTX and MIF based on the structure of the complex and revealed the amino acids that are effective in the interaction of MTX and MIF.

View Article and Find Full Text PDF

The androgen receptor (AR), a family of nuclear receptor proteins, stimulates the transcription of androgen-responsive genes. As its abnormal activation can cause the progression of prostate cancer, numerous types of ligands for AR have been developed as promising antagonists for the treatment of prostate cancer. We previously investigated the specific interactions between AR and nine types of existing non-steroidal ligands, using molecular simulations based on molecular mechanics and ab initio fragment molecular orbital methods.

View Article and Find Full Text PDF

We developed the world's first web-based public database for the storage, management, and sharing of fragment molecular orbital (FMO) calculation data sets describing the complex interactions between biomacromolecules, named FMO Database (https://drugdesign.riken.jp/FMODB/).

View Article and Find Full Text PDF

The specific binding of active vitamin-D to the vitamin-D receptor (VDR) is closely related to the onset of immunological diseases. To inhibit the binding, various compounds have been developed as potent inhibitors against VDR. Among them, a compound NS-54c, which was developed based on the first VDR antagonist TEI-9647 (25-dehydro-1α-hydroxyvitamin D-26,23-lactone), was revealed to posse almost 1000-fold improved antagonistic activity over the original TEI-9647.

View Article and Find Full Text PDF

To elucidate structural changes in the retinoic acid receptor-related orphan receptor gamma (RORγt) induced by the binding of an agonist or an inverse agonist, we conducted molecular dynamics (MD) simulations in explicit water. In addition, fragment molecular orbital calculations were carried out for certain characteristic structures obtained from the MD simulations to reveal important interactions between the amino acid residues of RORγt, and to distinguish the different effects in the binding of an agonist and an inverse agonist on the structure of RORγt. The results elucidate that the hydrogen bond between His479 of helix11 (H11) and Tyr502 of helix12 (H12) is important to keep the H12 conformation in the agonist-bound RORγt.

View Article and Find Full Text PDF

Non-secosteroidal VDR ligands without any assymmetric carbon were designed and synthesized based on the structure of the previously reported non-secosteroidal VDR agonist LG190178. The VDR-agonistic activity of all synthesized compounds was evaluated, and 7b emerged as a potent agonist activity with an EC value of 9.26 nM.

View Article and Find Full Text PDF

Vitamin D is recognized to play important roles in the onset of immunological diseases as well as the regulation of the amount of Ca in the blood. Since these physiological actions caused by active vitamin D are triggered by the specific interaction between the vitamin D receptor (VDR) and active vitamin D, many types of compounds have been developed as potent ligands against VDR. It was found that the binding affinity between VDR and its ligand depends significantly on the chirality of the ligand.

View Article and Find Full Text PDF

Both 2α- and 2β-hydroxypropyl substituted 14-epi-1α,25-dihydroxy-19-nortachysterols were synthesized to study the human vitamin D receptor (hVDR) binding affinity, binding configurations, and interactions with amino acid residues in the ligand binding domain of hVDR by X-ray co-crystallographic analysis. In conjunction with our previous results on 14-epi-19-nortachysterol, 2-methylidene-, 2α-methyl-, 2β-methyl, and 2α-hydroxypropoxy-14-epi-19-nortachysterol, we propose a variety of effects of substitution at the C2 position in the 14-epi-19-nortachysterol skeleton on biological activities.

View Article and Find Full Text PDF

Vitamin D plays an important role in the regulation of the calcium and phosphorus metabolism as well as in bone formation. These physiological actions caused by vitamin D are triggered by the specific binding of vitamin D to its receptor (VDR). Here we investigated the specific interactions and binding affinities between VDR and vitamin D derivatives, using ab initio fragment molecular orbital (FMO) calculations.

View Article and Find Full Text PDF

The Androgen Receptor (AR) is a family of nuclear receptor proteins and a ligand-activated transcription factor. Since its abnormal activation can cause the progression of prostate cancer, numerous types of antagonists against AR have been developed as promising agents for treating prostate cancers. We here investigated the specific interactions between AR and several types of non-steroid agents at an electronic level, using ab initio molecular simulations based on molecular mechanics and ab initio fragment molecular orbital (FMO) methods From the results obtained by FMO, we proposed novel agents as potent ligands against AR and investigated the binding properties between AR and these agents to confirm that some of them can bind more strongly with AR than the existing non-steroid agents and can be strongly effective ligands against AR.

View Article and Find Full Text PDF

Vitamin D is recognized to play important roles not only in the bone metabolism and the regulation of Ca amount in the blood but also in the onset of immunological diseases. These physiological actions caused by vitamin D are triggered by the specific interaction between vitamin D receptor (VDR) and vitamin D. In the present study, we investigated the interactions between VDR and vitamin D derivatives using ab initio molecular simulation, in order to elucidate the reason for the significant difference in their effects on VDR activity.

View Article and Find Full Text PDF

We synthesized and evaluated novel vitamin D3 derivatives with cyanoalkyl side chain at C-2 position on the basis of our previous research for 2α side chain which bears nitrogen atom-containing functional group. Through a study of X-ray co-crystal structures of human VDR and compound 3, we demonstrated that the 2α alkyl side chain in compound 3 shows a novel interaction in the complex of hVDR-LBD and ligand. This article is part of a Special Issue entitled '17th Vitamin D Workshop'.

View Article and Find Full Text PDF

2α-Heteroarylethyl-1α,25-dihydroxyvitamin D3 analogues, which were designed to form a hydrogen bond between Arg274 of human vitamin D receptor (hVDR) and a nitrogen atom of the heteroaromatic ring at the 2α-position, were synthesized. Among them, 2α-[2-(tetrazol-2-yl)ethyl]-1α,25-dihydroxyvitamin D3 showed higher osteocalcin promoter transactivation activity in human osteosarcoma (HOS) cells and a greater therapeutic effect in ovariectomized (OVX) rats, osteoporosis model animals, on enhancing bone mineral density than those of active vitamin D3. X-ray cocrystallographic analysis of the hVDR-ligand complex confirms that the new hydrogen bond formation stabilized the complex.

View Article and Find Full Text PDF

Mitogen-activated protein kinase-activated protein kinase 2 (MK2 or MAPKAP-K2), a serine/threonine kinase from the p38 mitogen-activated protein kinase signalling pathway, plays an important role in the production of TNF-α and other cytokines. In a previous report, it was shown that MK2 in complex with the selective inhibitor TEI-I01800 adopts an α-helical glycine-rich loop that is induced by the stable nonplanar conformer of TEI-I01800. To understand the mechanism of the structural change, the structure of MK2 bound to TEI-L03090, which lacks the key substituent found in TEI-I01800, was determined.

View Article and Find Full Text PDF

SLPI (secretory leukocyte protease inhibitor) is a 107-residue protease inhibitor which inhibits various serine proteases, including elastase, cathepsin G, chymotrypsin and trypsin. SLPI is obtained as a multiple inhibitor in lung defense and in chronic airway infection. X-ray crystal structures have so far reported that they are full-length SLPIs with bovine α-chymotrypsin and 1/2SLPI (recombinant C-terminal domain of SLPI; Arg58-Ala107) with HNE (human neutrophil elastase).

View Article and Find Full Text PDF

The crystal structure of human chymase complexed with a novel benzimidazole inhibitor, TJK002, was determined at 2.8 Å resolution. The X-ray crystallographic study shows that the benzimidazole inhibitor forms a non-covalent interaction with the catalytic domain of human chymase.

View Article and Find Full Text PDF

Mitogen-activated protein kinase-activated protein kinase 2 (MK2 or MAPKAP-K2) is a Ser/Thr kinase from the p38 mitogen-activated protein kinase signalling pathway and plays an important role in inflammatory diseases. The crystal structure of the MK2-TEI-I01800 complex has been reported; its Gly-rich loop was found to form an α-helix, not a β-sheet as has been observed for other Ser/Thr kinases. TEI-I01800 is 177-fold selective against MK2 compared with CDK2; in order to understand the inhibitory mechanism of TEI-I01800, the cyclin-dependent kinase 2 (CDK2) complex structure with TEI-I01800 was determined at 2.

View Article and Find Full Text PDF
Article Synopsis
  • X-ray cocrystallography reveals that the compound O1C3 forms a hydrogen bond with Arg274 in the human vitamin D receptor (hVDR), enabling it to bind three times stronger than natural vitamin D.
  • The study explores how substituting the terminal hydroxy group with a heteroaromatic ring affects binding affinity and biological activity.
  • The synthesized compounds 2α-[2-(tetrazol-2-yl)ethyl]-1α,25(OH)2D3 (1a) and its regioisomer 2α-[2-(tetrazol-1-yl)ethyl]-1α,25(OH)2D3 (1b) showed 1a has significantly better
View Article and Find Full Text PDF

Up to the present, numerous vitamin D derivatives have been synthesized, but most of them have straight side chains, and there are few publications described about in vitro and in vivo evaluations on bone by vitamin D derivatives. In our previous paper, we reported the synthesis of various C-2 substituted vitamin D derivatives (2b-2i) with a 2,2-dimethylcyclopentanone unit in the CD-ring side chains, and that the derivatives have strong activity for enhancing bone growth. On the basis of results, this time, we report the synthesis of 2α-substituted vitamin D3 derivatives with chiral cyclopentanone (3-6 and 12-16).

View Article and Find Full Text PDF

Recently, we evaluated a novel skeleton in the vitamin D family, 14-epi-1α,25(OH)2-19-nortachysterol, and discovered its unique binding configuration in the human vitamin D receptor (VDR) with the C5,6- and C7,8-s-trans triene configuration. Because of its unprecedented form, this skeleton has a promising characteristic profile for clinical use, and also the synthesis of its derivatives should be versatile. Therefore, we synthesized the novel analog, 2α-hydroxypropoxy substituted 14-epi-1α,25(OH)2-19-nortachysterol, and evaluated its human VDR binding affinity.

View Article and Find Full Text PDF

A novel class of mitogen-activated protein kinase-activated protein kinase 2 (MAPKAP-K2) inhibitors was discovered through screening a kinase-focused library. A homology model of MAPKAP-K2 was generated and used to guide the initial SAR studies and to rationalize the observed selectivity over CDK2. An X-ray crystal structure of a compound from the active series bound to crystalline MAPKAP-K2 confirmed the predicted binding mode.

View Article and Find Full Text PDF

The synthesis of 14-epi-1α,25(OH)(2)previtamin D(3), 14-epi-19-nor-1α,25(OH)(2)previtamin D(3), and their 2-substituted analogs is described. The vitamin D receptor (VDR) binding affinity was further evaluated and 2α-methyl substituted 14-epi-1α,25(OH)(2)previtamin D(3) had 17-fold more potent affinity than 14-epi-1α,25(OH)(2)previtamin D(3).In the comparison of these compounds, the effects of thermal equilibrium, with or without 19-carbon at the A-ring, and their CD-ring structures are discussed.

View Article and Find Full Text PDF

The Δ(16) structure as a vitamin D analog enhanced vitamin D receptor (VDR) binding affinity and induced significant cell differentiation, whereas its relative calcemic activity was reduced compared to 1α,25-dihydroxyvitamin D(3) (1α,25(OH)(2)D(3)). Methodologies available to introduce a double bond at C16-C17 of the D-ring on the seco-steroidal skeleton were limited; therefore, a new synthetic strategy was developed to obtain not only the Δ(16) structure, but also a new C15-functional group. Since C15-functionalization was unprecedented in vitamin D analog studies, the hybrid structure of Δ(16) and the C15-OH group at the D-ring may provide important information on the structure-activity relationship with vitamin D analogs.

View Article and Find Full Text PDF