Developing a biocompatible and biodegradable graphene-based fluorescent nanoprobe with the ability to visualize live cells could be interesting for intracellular imaging and monitoring the efficiency of chemotherapy. Herein, we report a biodegradable and biocompatible hybrid fluorescent graphene oxide (GO)-ZnS(Mn) composite synthesized via growth of ZnS(Mn) quantum dots (QDs) on the surface of GO in the aqueous medium. The prepared 'GO-ZnS(Mn)' composite was characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA) and high-resolution transmission electron microscopy (HR-TEM) along with selected area electron diffraction (SAED).
View Article and Find Full Text PDF453Three-dimensional bioprinting (3DBP) is an additive manufacturing technique that has emerged as a promising strategy for the fabrication of scaffolds, which can successfully recapitulate the architectural, biochemical, and physical cues of target tissues. More importantly, 3DBP offers fine spatiotemporal control and high submicron scale resolution, which can be leveraged for the incorporation and directional gradient release of single or multiple biomimetic cues, including cell-derived exosomes (EXOs). EXOs are extracellular vesicles that originate from the endosomal compartment of various cell types, with sizes ranging from 30 to120 nm.
View Article and Find Full Text PDFRNA-based therapies offer unique advantages for treating brain tumors. However, tumor penetrance and uptake are hampered by RNA therapeutic size, charge, and need to be "packaged" in large carriers to improve bioavailability. Here, we have examined delivery of siRNA, packaged in 50-nm cationic lipid-polymer hybrid nanoparticles (LPHs:siRNA), combined with microbubble-enhanced focused ultrasound (MB-FUS) in pediatric and adult preclinical brain tumor models.
View Article and Find Full Text PDFBiological materials derived from extracellular matrix (ECM) proteins have garnered interest as their composition is very similar to that of native tissue. Herein, we report the use of human cornea derived decellularized ECM (dECM) microparticles dispersed in human fibrin sealant as an accessible therapeutic alternative for corneal anterior stromal reconstruction. dECM microparticles had good particle size distribution (≤10 µm) and retained the majority of corneal ECM components found in native tissue.
View Article and Find Full Text PDFThe discipline of neurotheranostics was forged to improve diagnostic and therapeutic clinical outcomes for neurological disorders. Research was facilitated, in largest measure, by the creation of pharmacologically effective multimodal pharmaceutical formulations. Deployment of neurotheranostic agents could revolutionize staging and improve nervous system disease therapeutic outcomes.
View Article and Find Full Text PDFIL-10 is a crucial anti-inflammatory cytokine which can also exert a seemingly divergent immunostimulatory effects under certain conditions. We found high levels of the cytokine in a xenogeneic GVHD model where NOD-scid IL2rγcnull (NSG) mice were transplanted with human PBMCs in presence of IL-2. Presence of exogenous IL-10 altered the kinetics of IL-2 induced human T cell reconstitution , showing an initial delay, followed by rapid expansion.
View Article and Find Full Text PDFThe emergence of multidrug-resistant bacteria is a global threat for human society. There exist recorded data that silver was used as an antimicrobial agent by the ancient Greeks and Romans during the 8th century. Silver nanoparticles (AgNPs) are of potential interest because of their effective antibacterial and antiviral activities, with minimal cytotoxic effects on the cells.
View Article and Find Full Text PDFObjectives: The ability to target conventional drugs efficiently inside cells to kill intraphagosomal bacteria has been a major hurdle in treatment of infective diseases. We aimed to develop an efficient drug delivery system for combating infection caused by Salmonella, a well-known intracellular and intraphagosomal pathogen. Chitosan-dextran sulphate (CD) nanocapsules were assessed for their efficiency in delivering drugs against Salmonella.
View Article and Find Full Text PDF