Publications by authors named "Midgley P"

Article Synopsis
  • 3D electron diffraction (3DED) is a technique used to analyze the structure of micro-crystals, helping to identify molecular and crystal structures.* -
  • The study focused on discovering a new ninth polymorphic form of the drug indomethacin, known as σ, which was found in a specific product formulation aimed at enhancing solubility.* -
  • Researchers also found that σ indomethacin can be created by evaporating a solvent, highlighting the importance of 3DED in drug development and formulation analysis.*
View Article and Find Full Text PDF
Article Synopsis
  • * The study uses various methods to analyze how adding tie-chains between crystalline domains can enhance electrical conductivity, achieving an impressive 4810 S cm without sacrificing the Seebeck coefficient or significantly increasing thermal conductivity.
  • * The successful approach provides a pathway for improving thermoelectric performance in a variety of semicrystalline conjugated polymers, addressing traditional trade-offs in optimizing these materials.
View Article and Find Full Text PDF

Terahertz time-domain spectroscopy (THz-TDS) can be used to map spatial variations in electrical properties such as sheet conductivity, carrier density, and carrier mobility in graphene. Here, we consider wafer-scale graphene grown on germanium by chemical vapor deposition with non-uniformities and small domains due to reconstructions of the substrate during growth. The THz conductivity spectrum matches the predictions of the phenomenological Drude-Smith model for conductors with non-isotropic scattering caused by backscattering from boundaries and line defects.

View Article and Find Full Text PDF

Mapping the spatial distribution of crystal phases with nm-scale spatial resolution is an important characterisation task in studies of multi-phase materials. One popular approach is to use scanning precession electron diffraction which enables semi-automatic phase mapping at the nanoscale by collecting a single precession electron diffraction pattern at every probe position over regions spanning up to a few micrometers. For a successful phase mapping each diffraction pattern must be correctly identified.

View Article and Find Full Text PDF

Magnetic vector electron tomography (VET) is a promising technique that enables better understanding of micro- and nano-magnetic phenomena through the reconstruction of 3D magnetic fields at high spatial resolution. Here we introduce WRAP (Wavelet Regularised A Program), a reconstruction algorithm for magnetic VET that directly reconstructs the magnetic vector potential A using a compressed sensing framework which regularises for sparsity in the wavelet domain. We demonstrate that using WRAP leads to a significant increase in the fidelity of the 3D reconstruction and is especially robust when dealing with very limited data; using datasets simulated with realistic noise, we compare WRAP to a conventional reconstruction algorithm and find an improvement of ca.

View Article and Find Full Text PDF

Simultaneous transport and coupling of ionic and electronic charges is fundamental to electrochemical devices used in energy storage and conversion, neuromorphic computing and bioelectronics. While the mixed conductors enabling these technologies are widely used, the dynamic relationship between ionic and electronic transport is generally poorly understood, hindering the rational design of new materials. In semiconducting electrodes, electrochemical doping is assumed to be limited by motion of ions due to their large mass compared to electrons and/or holes.

View Article and Find Full Text PDF

Electron tomography (ET) has become an important tool for understanding the 3D nature of nanomaterials, with recent developments enabling not only scalar reconstructions of electron density, but also vector reconstructions of magnetic fields. However, whilst new signals have been incorporated into the ET toolkit, the acquisition schemes have largely kept to conventional single-axis tilt series for scalar ET, and dual-axis schemes for magnetic vector ET. In this work, we explore the potential of using multi-axis tilt schemes including conical and spiral tilt schemes to improve reconstruction fidelity in scalar and magnetic vector ET.

View Article and Find Full Text PDF

Intentionally disordered metal-organic frameworks (MOFs) display rich functional behaviour. However, the characterisation of their atomic structures remains incredibly challenging. X-ray pair distribution function techniques have been pivotal in determining their average local structure but are largely insensitive to spatial variations in the structure.

View Article and Find Full Text PDF

Characterization of nanoscale changes in the atomic structure of amorphous materials is a profound challenge. Established X-ray and neutron total scattering methods typically provide sufficient signal quality only over macroscopic volumes. Pair distribution function analysis using electron scattering (ePDF) in the scanning transmission electron microscope (STEM) has emerged as a method of probing nanovolumes of these materials, but inorganic glasses as well as metal-organic frameworks (MOFs) and many other materials containing organic components are characteristically prone to irreversible changes after limited electron beam exposures.

View Article and Find Full Text PDF

Skyrmion-based devices have been proposed as a promising solution for low-energy data storage. These devices include racetrack or logic structures and require skyrmions to be confined in regions with dimensions comparable to the size of a single skyrmion. Here we examine skyrmions in FeGe device shapes using Lorentz transmission electron microscopy to reveal the consequences of skyrmion confinement in a device-like structure.

View Article and Find Full Text PDF

We report the crystal structure of a new polymorph of l-tyrosine (denoted the β polymorph), prepared by crystallization from the gas phase following vacuum sublimation. Structure determination was carried out by combined analysis of three-dimensional electron diffraction (3D-ED) data and powder X-ray diffraction (XRD) data. Specifically, 3D-ED data were required for reliable unit cell determination and space group assignment, with structure solution carried out independently from both 3D-ED data and powder XRD data, using the direct-space strategy for structure solution implemented using a genetic algorithm.

View Article and Find Full Text PDF

Understanding the nanoscopic chemical and structural changes that drive instabilities in emerging energy materials is essential for mitigating device degradation. The power conversion efficiency of halide perovskite photovoltaic devices has reached 25.7 per cent in single-junction and 29.

View Article and Find Full Text PDF

The interaction of high-energy electrons and X-ray photons with beam-sensitive semiconductors such as halide perovskites is essential for the characterization and understanding of these optoelectronic materials. Using nanoprobe diffraction techniques, which can investigate physical properties on the nanoscale, studies of the interaction of electron and X-ray radiation with state-of-the-art (FA MA Cs )Pb(I Br ) hybrid halide perovskite films (FA, formamidinium; MA, methylammonium) are performed, tracking the changes in the local crystal structure as a function of fluence using scanning electron diffraction and synchrotron nano X-ray diffraction techniques. Perovskite grains are identified, from which additional reflections, corresponding to PbBr , appear as a crystalline degradation phase after fluences of 200 e Å .

View Article and Find Full Text PDF

Objective: Confidence treating critically ill infants presenting to general ED may be limited by inexperience, with procedures deferred until specialised transport teams arrive.

Methods: This retrospective cohort study analysed critical procedures performed by referring ED physicians, compared with a neonatal emergency transport service, on infants transferred over a 12-month period.

Results: All 150 eligible infants were included, with median (interquartile range) age 28 (16-43) days.

View Article and Find Full Text PDF

Efforts to stabilize photoactive formamidinium (FA)–based halide perovskites for perovskite photovoltaics have focused on the growth of cubic formamidinium lead iodide (α-FAPbI) phases by empirically alloying with cesium, methylammonium (MA) cations, or both. We show that such stabilized FA-rich perovskites are noncubic and exhibit ~2° octahedral tilting at room temperature. This tilting, resolvable only with the use of local nanostructure characterization techniques, imparts phase stability by frustrating transitions from photoactive to hexagonal phases.

View Article and Find Full Text PDF

Strong-coupling between excitons and confined photonic modes can lead to the formation of new quasi-particles termed exciton-polaritons which can display a range of interesting properties such as super-fluidity, ultrafast transport and Bose-Einstein condensation. Strong-coupling typically occurs when an excitonic material is confided in a dielectric or plasmonic microcavity. Here, we show polaritons can form at room temperature in a range of chemically diverse, organic semiconductor thin films, despite the absence of an external cavity.

View Article and Find Full Text PDF

Control over the spatial distribution of components in metal-organic frameworks has potential to unlock improved performance and new behaviour in separations, sensing and catalysis. We report an unprecedented single-step synthesis of multi-component metal-organic framework (MOF) nanoparticles based on the canonical ZIF-8 (Zn) system and its Cd analogue, which form with a core-shell structure whose internal interface can be systematically tuned. We use scanning transmission electron microscopy, X-ray energy dispersive spectroscopy and a new composition gradient model to fit high-resolution X-ray diffraction data to show how core-shell composition and interface characteristics are intricately controlled by synthesis temperature and reaction composition.

View Article and Find Full Text PDF

Metal fluorides, promising lithium-ion battery cathode materials, have been classified as conversion materials due to the reconstructive phase transitions widely presumed to occur upon lithiation. We challenge this view by studying FeF using X-ray total scattering and electron diffraction techniques that measure structure over multiple length scales coupled with density functional theory calculations, and by revisiting prior experimental studies of FeF and CuF. Metal fluoride lithiation is instead dominated by diffusion-controlled displacement mechanisms, and a clear topological relationship between the metal fluoride F sublattices and that of LiF is established.

View Article and Find Full Text PDF

Cellulose is crystallized by plants and other organisms into fibrous nanocrystals. The mechanical properties of these nanofibers and the formation of helical superstructures with energy dissipating and adaptive optical properties depend on the ordering of polysaccharide chains within these nanocrystals, which is typically measured in bulk average. Direct measurement of the local polysaccharide chain arrangement has been elusive.

View Article and Find Full Text PDF

Crystal orientation mapping experiments typically measure orientations that are similar within grains and misorientations that are similar along grain boundaries. Such (mis)orientation data cluster in (mis)orientation space, and clusters are more pronounced if preferred orientations or special orientation relationships are present. Here, cluster analysis of (mis)orientation data is described and demonstrated using distance metrics incorporating crystal symmetry and the density-based clustering algorithm DBSCAN.

View Article and Find Full Text PDF

Iron oxide nanorings have great promise for biomedical applications because of their magnetic vortex state, which endows them with a low remanent magnetization while retaining a large saturation magnetization. Here we use micromagnetic simulations to predict the exact shapes that can sustain magnetic vortices, using a toroidal model geometry with variable diameter, ring thickness, and ring eccentricity. Our model phase diagram is then compared with simulations of experimental geometries obtained by electron tomography.

View Article and Find Full Text PDF

Defect engineering can enhance key properties of metal-organic frameworks (MOFs). Tailoring the distribution of defects, for example in correlated nanodomains, requires characterization across length scales. However, a critical nanoscale characterization gap has emerged between the bulk diffraction techniques used to detect defect nanodomains and the subnanometer imaging used to observe individual defects.

View Article and Find Full Text PDF

Halide perovskite materials have promising performance characteristics for low-cost optoelectronic applications. Photovoltaic devices fabricated from perovskite absorbers have reached power conversion efficiencies above 25 per cent in single-junction devices and 28 per cent in tandem devices. This strong performance (albeit below the practical limits of about 30 per cent and 35 per cent, respectively) is surprising in thin films processed from solution at low-temperature, a method that generally produces abundant crystalline defects.

View Article and Find Full Text PDF

Vibrational spectroscopies directly record details of bonding in materials, but spatially resolved methods have been limited to surface techniques for mapping functional groups at the nanoscale. Electron energy loss spectroscopy (EELS) in the scanning transmission electron microscope presents a route to functional group analysis from nanoscale volumes using transmitted subnanometer electron probes. Here, we now use vibrational EELS to map distinct carboxylate and imidazolate linkers in a metal-organic framework (MOF) crystal-glass composite material.

View Article and Find Full Text PDF