Nanozymes play a pivotal role in mitigating excessive oxidative stress, however, determining their specific enzyme-mimicking activities for intracellular free radical scavenging is challenging due to endo-lysosomal entrapment. In this study, we employ a genetic engineering strategy to generate ionizable ferritin nanocages (iFTn), enabling their escape from endo-lysosomes and entry into the cytoplasm. Specifically, ionizable repeated Histidine-Histidine-Glutamic acid (9HE) sequences are genetically incorporated into the outer surface of human heavy chain FTn, followed by the assembly of various chain-like nanostructures via a two-armed polyethylene glycol (PEG).
View Article and Find Full Text PDFCartilage defect repair remains a challenge for clinicians due to the limited self-healing capabilities of cartilage. Microenvironment-specific biomimetic hydrogels have shown great potential in cartilage regeneration because of their excellent biological properties. In this study, a hydrogel system consisting of p-hydroxybenzene propanoic acid-modified chitosan (PC), silk fibroin (SF) and decellularized cartilage extracellular matrix (DCM) was prepared.
View Article and Find Full Text PDFDecellularized allografts have emerged as promising candidates for vascular bypass grafting, owing to their inherent bioactivity and minimal immunogenicity. However, graft failure that results from suboptimal regeneration and pathological remodeling has hindered their clinical adoption. Recent advances in vascular biology highlight the pivotal role of COUP-TFII in orchestrating endothelial identity, angiogenesis, safeguarding against atherosclerosis, and mitigating vascular calcification.
View Article and Find Full Text PDFPurpose: Physical activity (PA) can improve health-related outcomes for head and neck cancer (HaNC) patients, and PA guidance from healthcare professionals' can increase patients' PA levels. However, less than 9% of HaNC patients are physically active. This study explored healthcare professionals' promotion of PA across the National Health Service (NHS) in North West England and North Wales, to HaNC patients.
View Article and Find Full Text PDFAdv Healthc Mater
January 2025
Liver fibrosis poses a significant global health burden, in which hepatic stellate cells (HSCs) play a crucial role. Targeted nanomedicine delivery systems directed at HSCs have shown immense potential in the treatment of liver fibrosis. Herein, a bioinspired material, engineered therapeutic miR-181a-5p (a miRNA known to inhibit fibrotic signaling pathways) and targeted moiety hyaluronic acid (HA) co-functionalized extracellular vesicles (EVs) are developed.
View Article and Find Full Text PDFNaturally sourced biomolecules and their derivatives have had significant historical impacts in terms of their biomedical application [...
View Article and Find Full Text PDFBackground And Aim: Cancer related fatigue significantly impairs the ability to undertake sustained physical activity across the domains of daily living, work and recreation. The purpose of this study is to monitor cancer related fatigue and the factors affected or caused by it for 12 months in head and neck cancer patients following their diagnosis. Their perceptions of how fatigue might affect their activity levels in addition to identifying avenues to improve engagement with physical activity will be also explored.
View Article and Find Full Text PDFDigital light processing (DLP) bioprinting, known for its high resolution and speed, enables the precise spatial arrangement of biomaterials and has become integral to advancing tissue engineering and regenerative medicine. Nevertheless, inherent light scattering presents significant challenges to the fidelity of the manufactured structures. Herein, we introduce a photoinhibition strategy based on Rutin nanoparticles (Rnps), attenuating the scattering effect through concurrent photoabsorption and free radical reaction.
View Article and Find Full Text PDFVascular injury is central to the pathogenesis and progression of cardiovascular diseases, however, fostering alternative strategies to alleviate vascular injury remains a persisting challenge. Given the central role of cell-derived nitric oxide (NO) in modulating the endogenous repair of vascular injury, NO-generating proteolipid nanovesicles (PLV-NO) are designed that recapitulate the cell-mimicking functions for vascular repair and replacement. Specifically, the proteolipid nanovesicles (PLV) are versatilely fabricated using membrane proteins derived from different types of cells, followed by the incorporation of NO-generating nanozymes capable of catalyzing endogenous donors to produce NO.
View Article and Find Full Text PDFThe mitochondrial enzyme arginase-2 (Arg-2) is implicated in the pathophysiology of contrast-induced acute kidney injury (CI-AKI). Therefore, Arg-2 represents a candid target for CI-AKI prevention. Here, layer-by-layer (LbL) assembled renal-targeting polymeric nanoparticles are developed to efficiently deliver small interfering RNA (siRNA), knockdown Arg-2 expression in renal tubules, and prevention of CI-AKI is evaluated.
View Article and Find Full Text PDFBackground And Aim: A plateau in oxygen uptake ([Formula: see text]) during an incremental cardiopulmonary exercise test (CPET) to volitional exhaustion appears less likely to occur in special and clinical populations. Secondary maximal oxygen uptake ([Formula: see text]) criteria have been shown to commonly underestimate the actual [Formula: see text]. The verification phase protocol might determine the occurrence of 'true' [Formula: see text] in these populations.
View Article and Find Full Text PDFThe epithelial mucosa is a key biological barrier faced by gastrointestinal, intraoral, intranasal, ocular, and vaginal drug delivery. Ligand-modified nanoparticles demonstrate excellent ability on this process, but their efficacy is diminished by the formation of protein coronas (PCs) when they interact with biological matrices. PCs are broadly implicated in affecting the fate of NPs in vivo and in vitro, yet few studies have investigated PCs formed during interactions of NPs with the epithelial mucosa, especially mucus.
View Article and Find Full Text PDFWell-defined nanostructures are crucial for precisely understanding nano-bio interactions. However, nanoparticles (NPs) fabricated through conventional synthesis approaches often lack poor controllability and reproducibility. Herein, a synthetic biology-based strategy is introduced to fabricate uniformly reproducible protein-based NPs, achieving precise control over heterogeneous components of the NPs.
View Article and Find Full Text PDFInjectable biomaterials have garnered increasing attention for their potential and beneficial applications in minimally invasive surgical procedures and tissue regeneration. Extracellular matrix (ECM) hydrogels and porous synthetic polymer microspheres can be prepared for injectable administration to achieve in situ tissue regeneration. However, the rapid degradation of ECM hydrogels and the poor injectability and biological inertness of most polymeric microspheres limit their pro-regenerative capabilities.
View Article and Find Full Text PDFSynchronized ferroptosis contributes to nephron loss in acute kidney injury (AKI). However, the propagation signals and the underlying mechanisms of the synchronized ferroptosis for renal tubular injury remain unresolved. Here we report that platelet-activating factor (PAF) and PAF-like phospholipids (PAF-LPLs) mediated synchronized ferroptosis and contributed to AKI.
View Article and Find Full Text PDFMesenchymal stem cells (MSCs) modulate immune responses and maintain self-tolerance. Their trophic activities and regenerative properties make them potential immunosuppressants for treating autoimmune and autoinflammatory diseases. MSCs are drawn to sites of injury and inflammation where they can both reduce inflammation and contribute to tissue regeneration.
View Article and Find Full Text PDFMyofibroblasts are the principal effector cells driving fibrosis, and their accumulation in tissues is a fundamental feature of fibrosis. Essential pathways have been identified as being central to promoting myofibroblast differentiation, revealing multiple targets for intervention. Compared with large proteins and antibodies, peptide-based therapies have transpired to serve as biocompatible and cost-effective solutions to exert biomimicry, agonistic, and antagonistic activities with a high degree of targeting specificity and selectivity.
View Article and Find Full Text PDFBackground And Aim: Attempts at personalisation of exercise programmes in head and neck cancer (HaNC) have been limited. The main aim of the present study is to investigate the feasibility and acceptability of introducing a remotely delivered, fully personalised, collaborative, and flexible approach to prescribing and delivering exercise programmes into the HaNC usual care pathway.
Methods: This is a single arm, feasibility study.
Peripheral nerve injuries may result in severe long-gap interruptions that are challenging to repair. Autografting is the gold standard surgical approach for repairing long-gap nerve injuries but can result in prominent donor-site complications. Instead, imitating the native neural microarchitecture using synthetic conduits is expected to offer an alternative strategy for improving nerve regeneration.
View Article and Find Full Text PDFPurpose: Physical activity can improve health outcomes for cancer patients; however, only 30% of patients are physically active. This review explored barriers to and facilitators of physical activity promotion and participation in patients living with and beyond cancer. Secondary aims were to (1) explore similarities and differences in barriers and facilitators experienced in head and neck cancer versus other cancers, and (2) identify how many studies considered the influence of socioeconomic characteristics on physical activity behaviour.
View Article and Find Full Text PDFSmall-diameter vascular grafts (SDVGs) are urgently required for clinical applications. Constructing vascular grafts mimicking the defining features of native arteries is a promising strategy. Here, we constructed a tri-layered vascular graft with a native artery decellularized extracellular matrix (dECM) mimicking the component of arteries.
View Article and Find Full Text PDFTissue-resident cardiac macrophage subsets mediate cardiac tissue inflammation and repair after acute myocardial infarction (AMI). CC chemokine receptor 2 (CCR2)-expressing macrophages have phenotypical similarities to M1-polarized macrophages, are pro-inflammatory, and recruit CCR2 circulating monocytes to infarcted myocardium. Small extracellular vesicles (sEV) from CCR2 macrophages, which phenotypically resemble M2-polarized macrophages, promote anti-inflammatory activity and cardiac repair.
View Article and Find Full Text PDF