Publications by authors named "Micolich A"

Electronically conductive protein-based materials can enable the creation of bioelectronic components and devices from sustainable and nontoxic materials, while also being well-suited to interface with biological systems, such as living cells, for biosensor applications. However, as proteins are generally electrical insulators, the ability to render protein assemblies electroactive in a tailorable manner can usher in a plethora of useful materials. Here, an approach to fabricate electronically conductive protein nanowires is presented by aligning heme molecules in proximity along protein filaments, with these nanowires also possessing charge transfer abilities that enable energy harvesting from ambient humidity.

View Article and Find Full Text PDF

Reported herein is a neutron reflectometry (NR) study on hydrated Nafion thin films (∼30 nm) on a silicon substrate with native oxide. The Nafion morphology is investigated systematically across the whole relative humidity range using both HO and DO vapours to enable a comparative study. By utilising this systematic approach two key results have been obtained.

View Article and Find Full Text PDF

The two-dimensional (2-D) framework, [Cu(BTDAT)(MeOH)] {BTDAT = bis-[1,2,5]-thiadiazolo-tetracyanoquinodimethane}, possesses remarkable multi-step redox properties, with electrochemical studies revealing six quasi-stable redox states in the solid state. In situ electron paramagnetic resonance and visible-near infrared spectroelectrochemistry elucidated the mechanism for these multi-step redox processes, as well as the optical and electrochromic behavior of the BTDAT ligand and framework. In studying the structural, spectroscopic, and electronic properties of [Cu(BTDAT)(MeOH)], the as-synthesized framework was found to exist in a mixed-valence state with thermally-activated semiconducting behavior.

View Article and Find Full Text PDF

A central endeavour in bioelectronics is the development of logic elements to transduce and process ionic to electronic signals. Motivated by this challenge, we report fully monolithic, nanoscale logic elements featuring n- and p-type nanowires as electronic channels that are proton-gated by electron-beam patterned Nafion. We demonstrate inverter circuits with state-of-the-art ion-to-electron transduction performance giving DC gain exceeding 5 and frequency response up to 2 kHz.

View Article and Find Full Text PDF

We report on the postgrowth shaping of free-standing two-dimensional (2D) InAs nanofins that are grown by selective-area epitaxy and mechanically transferred to a separate substrate for device fabrication. We use a citric acid-based wet etch that enables complex shapes, for example, van der Pauw cloverleaf structures, with patterning resolution down to 150 nm as well as partial thinning of the nanofin to improve local gate response. We exploit the high sensitivity of the cloverleaf structures to transport anisotropy to address the fundamental question of whether there is a measurable transport anisotropy arising from wurtzite/zincblende polytypism in 2D InAs nanostructures.

View Article and Find Full Text PDF

Recent advances in bottom-up growth are giving rise to a range of new two-dimensional nanostructures. Hall effect measurements play an important role in their electrical characterization. However, size constraints can lead to device geometries that deviate significantly from the ideal of elongated Hall bars with currentless contacts.

View Article and Find Full Text PDF

We report on a parylene chemical vapor deposition system custom designed for producing ultrathin parylene films (5-100 nm thickness) for use as an electrical insulator in nanoscale electronic devices, including as the gate insulator in transistors. The system features a small deposition chamber that can be isolated and purged for process termination, a quartz crystal microbalance for monitoring deposition, and a rotating angled stage to increase coating conformity. The system was mostly built from off-the-shelf vacuum fittings allowing for easy modification and reduced cost compared to commercial parylene coating systems.

View Article and Find Full Text PDF

We report a method for growing rectangular InAs nanofins with deterministic length, width, and height by dielectric-templated selective-area epitaxy. These freestanding nanofins can be transferred to lay flat on a separate substrate for device fabrication. A key goal was to regain a spatial dimension for device design compared to nanowires, while retaining the benefits of bottom-up epitaxial growth.

View Article and Find Full Text PDF

Nanopore sensors detect individual species passing through a nanoscale pore. This experimental paradigm suffers from long analysis times at low analyte concentration and non-specific signals in complex media. These limit effectiveness of nanopore sensors for quantitative analysis.

View Article and Find Full Text PDF

We introduce a fabrication method for gate-all-around nanowire field-effect transistors. Single nanowires were aligned perpendicular to underlying bottom gates using a resist-trench alignment technique. Top gates were then defined aligned to the bottom gates to form gate-all-around structures.

View Article and Find Full Text PDF

Difficulties in obtaining high-performance p-type transistors and gate insulator charge-trapping effects present two major challenges for III-V complementary metal-oxide semiconductor (CMOS) electronics. We report a p-GaAs nanowire metal-semiconductor field-effect transistor (MESFET) that eliminates the need for a gate insulator by exploiting the Schottky barrier at the metal-GaAs interface. Our device beats the best-performing p-GaSb nanowire metal-oxide-semiconductor field effect transistor (MOSFET), giving a typical subthreshold swing of 62 mV/dec, within 4% of the thermal limit, on-off ratio ∼10, on-resistance ∼700 kΩ, contact resistance ∼30 kΩ, peak transconductance 1.

View Article and Find Full Text PDF

We report the development of nanowire field-effect transistors featuring an ultrathin parylene film as a polymer gate insulator. The room temperature, gas-phase deposition of parylene is an attractive alternative to oxide insulators prepared at high temperatures using atomic layer deposition. We discuss our custom-built parylene deposition system, which is designed for reliable and controlled deposition of <100 nm thick parylene films on III-V nanowires standing vertically on a growth substrate or horizontally on a device substrate.

View Article and Find Full Text PDF

We compare the characteristics of phase-pure MOCVD grown ZB and WZ InAs nanowire transistors in several atmospheres: air, dry pure N and O, and N bubbled through liquid HO and alcohols to identify whether phase-related structural/surface differences affect their response. Both WZ and ZB give poor gate characteristics in dry state. Adsorption of polar species reduces off-current by 2-3 orders of magnitude, increases on-off ratio and significantly reduces sub-threshold slope.

View Article and Find Full Text PDF

GaAs was central to the development of quantum devices but is rarely used for nanowire-based quantum devices with InAs, InSb and SiGe instead taking the leading role. p-type GaAs nanowires offer a path to studying strongly confined 0D and 1D hole systems with strong spin-orbit effects, motivating our development of nanowire transistors featuring Be-doped p-type GaAs nanowires, AuBe alloy contacts and patterned local gate electrodes towards making nanowire-based quantum hole devices. We report on nanowire transistors with traditional substrate back-gates and EBL-defined metal/oxide top-gates produced using GaAs nanowires with three different Be-doping densities and various AuBe contact processing recipes.

View Article and Find Full Text PDF

Rorschach inkblots have had a striking impact on the worlds of art and science because of the remarkable variety of associations with recognizable and namable objects they induce. Originally adopted as a projective psychological tool to probe mental health, psychologists and artists have more recently interpreted the variety of induced images simply as a signature of the observers' creativity. Here we analyze the relationship between the spatial scaling parameters of the inkblot patterns and the number of induced associations, and suggest that the perceived images are induced by the fractal characteristics of the blot edges.

View Article and Find Full Text PDF

Electrically active constructs can have a beneficial effect on electroresponsive tissues, such as the brain, heart, and nervous system. Conducting polymers (CPs) are being considered as components of these constructs because of their intrinsic electroactive and flexible nature. However, their clinical application has been largely hampered by their short operational time due to a decrease in their electronic properties.

View Article and Find Full Text PDF

A key task in the emerging field of bioelectronics is the transduction between ionic/protonic and electronic signals at high fidelity. This is a considerable challenge since the two carrier types exhibit intrinsically different physics and are best supported by very different materials types-electronic signals in inorganic semiconductors and ionic/protonic signals in organic or bio-organic polymers, gels, or electrolytes. Here we demonstrate a new class of organic-inorganic transducing interface featuring semiconducting nanowires electrostatically gated using a solid proton-transporting hygroscopic polymer.

View Article and Find Full Text PDF

We report a method for making horizontal wrap-gate nanowire transistors with up to four independently controllable wrap-gated segments. While the step up to two independent wrap-gates requires a major change in fabrication methodology, a key advantage to this new approach, and the horizontal orientation more generally, is that achieving more than two wrap-gate segments then requires no extra fabrication steps. This is in contrast to the vertical orientation, where a significant subset of the fabrication steps needs to be repeated for each additional gate.

View Article and Find Full Text PDF

We report an electron-beam based method for the nanoscale patterning of the poly(ethylene oxide)/LiClO4 polymer electrolyte. We use the patterned polymer electrolyte as a high capacitance gate dielectric in single nanowire transistors and obtain subthreshold swings comparable to conventional metal/oxide wrap-gated nanowire transistors. Patterning eliminates gate/contact overlap, which reduces parasitic effects and enables multiple, independently controllable gates.

View Article and Find Full Text PDF

We report a study of transport blockade features in a quantum dot single-electron transistor, based on an undoped AlGaAs/GaAs heterostructure. We observe suppression of transport through the ground state of the dot, as well as negative differential conductance at finite source-drain bias. The temperature and magnetic field dependences of these features indicate the couplings between the leads and the quantum dot states are suppressed.

View Article and Find Full Text PDF

We have studied the efficacy of (NH4)2Sx surface passivation on the (311)A GaAs surface. We report XPS studies of simultaneously-grown (311)A and (100) heterostructures showing that the (NH4)2Sx solution removes surface oxide and sulfidizes both surfaces. Passivation is often characterized using photoluminescence measurements; we show that while (NH4)2Sx treatment gives a 40-60 ×  increase in photoluminescence intensity for the (100) surface, an increase of only 2-3 ×  is obtained for the (311)A surface.

View Article and Find Full Text PDF

The out-of-plane g-factor g([perpendicular])(*) for quasi two-dimensional (2D) holes in a (100) GaAs heterostructure is studied using a variable width quantum wire. A direct measurement of the Zeeman splitting is performed in a magnetic field applied perpendicular to the 2D plane. We measure an out-of-plane g-factor up to g([perpendicular])(*) = 5, which is larger than previous optical studies of g([perpendicular])(*) and is approaching the long predicted but never experimentally verified out-of-plane g-factor of 7.

View Article and Find Full Text PDF

Disorder increasingly affects performance as electronic devices are reduced in size. The ionized dopants used to populate a device with electrons are particularly problematic, leading to unpredictable changes in the behavior of devices such as quantum dots each time they are cooled for use. We show that a quantum dot can be used as a highly sensitive probe of changes in disorder potential and that, by removing the ionized dopants and populating the dot electrostatically, its electronic properties become reproducible with high fidelity after thermal cycling to room temperature.

View Article and Find Full Text PDF

Quantum point contacts (QPCs) have shown promise as nanoscale spin-selective components for spintronic applications and are of fundamental interest in the study of electron many-body effects such as the 0.7 × 2e(2)/h anomaly. We report on the dependence of the 1D Landé g-factor g and 0.

View Article and Find Full Text PDF