Publications by authors named "Micol Introna"

Road traffic is an important source of urban air pollutants. Due to increasingly strict controls of exhaust emissions from road traffic, their contribution to the total emissions has strongly decreased over time in high-income countries. In contrast, non-exhaust emissions from road vehicles are not yet legislated and now make up the major proportion of road traffic emissions in many countries.

View Article and Find Full Text PDF

Clinical cases and experimental evidence revealed that electronic cigarettes (ECIG) induce serious adverse health effects, but underlying mechanisms remain to be fully uncovered. Based on recent exploratory evidence, investigating the effects of ECIG on macrophages can broadly define potential mechanisms by focusing on the effect of ECIG exposure with or without nicotine. Here we investigated the effect of ECIG-aerosol exposure on macrophages (MQ) phenotype, inflammatory response, and function of macrophages.

View Article and Find Full Text PDF

Biodiesel is considered to be a sustainable alternative for fossil fuels such as petroleum-based diesel. However, we still lack knowledge about the impact of biodiesel emissions on humans, as airways and lungs are the primary target organs of inhaled toxicants. This study investigated the effect of exhaust particles from well-characterized rapeseed methyl ester (RME) biodiesel exhaust particles (BDEP) and petro-diesel exhaust particles (DEP) on primary bronchial epithelial cells (PBEC) and macrophages (MQ).

View Article and Find Full Text PDF
Article Synopsis
  • Heated tobacco products (HTP) are new ways to deliver nicotine that use heat instead of burning to create a smoke-like aerosol.
  • Experiments showed that HTP smoke caused damage in lung models, including increased harmful substances and changes in genes that could affect health.
  • The study suggests more research is needed to understand the risks of different HTP flavors and how they affect people.
View Article and Find Full Text PDF

Background: The SARS-CoV-2 spike protein mediates attachment of the virus to the host cell receptor and fusion between the virus and the cell membrane. The S1 subunit of the spike glycoprotein (S1 protein) contains the angiotensin converting enzyme 2 (ACE2) receptor binding domain. The SARS-CoV-2 variants of concern contain mutations in the S1 subunit.

View Article and Find Full Text PDF