Publications by authors named "Micol De Simoni"

Sharp dose gradients and high biological effectiveness make ions such as C an ideal tool to treat deep-seated tumors, however, at the same time, sensitive to errors in the range prediction. Tumor safety margins mitigate these uncertainties, but during the irradiation they lead to unavoidable damage to the surrounding healthy tissue. To fully exploit the Bragg peak benefits, a large effort is put into establishing precise range verification methods.

View Article and Find Full Text PDF

Morphological changes that may arise through a treatment course are probably one of the most significant sources of range uncertainty in proton therapy. Non-invasive treatment monitoring is useful to increase treatment quality. The INSIDE in-beam Positron Emission Tomography (PET) scanner performs range monitoring in proton and carbon therapy treatments at the National Center of Oncological Hadrontherapy (CNAO).

View Article and Find Full Text PDF

The advent of Graphics Processing Units (GPU) has prompted the development of Monte Carlo (MC) algorithms that can significantly reduce the simulation time with respect to standard MC algorithms based on Central Processing Unit (CPU) hardware. The possibility to evaluate a complete treatment plan within minutes, instead of hours, paves the way for many clinical applications where the time-factor is important. FRED (Fast paRticle thErapy Dose evaluator) is a software that exploits the GPU power to recalculate and optimise ion beam treatment plans.

View Article and Find Full Text PDF

Different therapies are adopted for the treatment of deep seated tumours in combination or as an alternative to surgical removal or chemotherapy: radiotherapy with photons (RT), particle therapy (PT) with protons or even heavier ions like C, are now available in clinical centres. In addition to these irradiation modalities, the use of Very High Energy Electron (VHEE) beams (100-200 MeV) has been suggested in the past, but the diffusion of that technique was delayed due to the needed space and budget, with respect to standard photon devices. These disadvantages were not paired by an increased therapeutic efficacy, at least when comparing to proton or carbon ion beams.

View Article and Find Full Text PDF

Purpose: In-beam positron emission tomography (PET) is one of the modalities that can be used for in vivo noninvasive treatment monitoring in proton therapy. Although PET monitoring has been frequently applied for this purpose, there is still no straightforward method to translate the information obtained from the PET images into easy-to-interpret information for clinical personnel. The purpose of this work is to propose a statistical method for analyzing in-beam PET monitoring images that can be used to locate, quantify, and visualize regions with possible morphological changes occurring over the course of treatment.

View Article and Find Full Text PDF

Particle therapy in which deep seated tumours are treated using C ions (Carbon Ions RadioTherapy or CIRT) exploits the high conformity in the dose release, the high relative biological effectiveness and low oxygen enhancement ratio of such projectiles. The advantages of CIRT are driving a rapid increase in the number of centres that are trying to implement such technique. To fully profit from the ballistic precision achievable in delivering the dose to the target volume an online range verification system would be needed, but currently missing.

View Article and Find Full Text PDF

In neuroendocrine tumor (NET), complete surgery could better the prognosis. Radioguided surgery (RGS) with β-radioisotopes is a novel approach focused on developing a new probe that, detecting electrons and operating with low background, provides a clearer delineation of the lesions with low radiation exposition for surgeons. As a first step to validate this procedure, specimens of tumors expressing somatostatin receptors, as small intestine neuroendocrine tumor (SI-NET), were tested.

View Article and Find Full Text PDF

Background: Recently, a flexible DROP-IN gamma-probe was introduced for robot-assisted radioguided surgery, using traditional low-energy SPECT-isotopes. In parallel, a novel approach to achieve sensitive radioguidance using beta-emitting PET isotopes has been proposed. Integration of these two concepts would allow to exploit the use of PET tracers during robot-assisted tumor-receptor-targeted.

View Article and Find Full Text PDF

The possibility to use β decaying isotopes for radioguided surgery (RGS) has been recently proposed, and first promising tests on ex-vivo samples of Meningioma and intestinal Neuroendocrine Tumor (NET) have been published. This paper reports a study of the uptake of Ga-DOTATOC in pancreatic NETs (pNETs) in order to assess the feasibility of a new RGS approach using Y-DOTATOC. Tumor and healthy pancreas uptakes were estimated from Ga-DOTATOC PET/CT scans of 30 patients with pNETs.

View Article and Find Full Text PDF

Radio Guided Surgery is a technique helping the surgeon in the resection of tumors: a radiolabeled tracer is administered to the patient before surgery and then the surgeon evaluates the completeness of the resection with a handheld detector sensitive to emitted radiation. Established methods rely on γ emitting tracers coupled with γ detecting probes. The efficacy of this technique is however hindered by the high penetration of γ radiation, limiting its applicability to low background conditions.

View Article and Find Full Text PDF