HIV-1 reverse transcription is initiated from a tRNA(3)(Lys) molecule annealed to the viral RNA at the primer binding site (PBS), but the structure of the initiation complex of reverse transcription remains controversial. Here, we performed in situ structural probing, as well as in vitro structural and functional studies, of the initiation complexes formed by highly divergent isolates (MAL and NL4.3/HXB2).
View Article and Find Full Text PDFReverse transcription of HIV-1 RNA is initiated from the 3' end of a tRNA3Lys molecule annealed to the primer binding site (PBS). An additional interaction between the anticodon loop of tRNA3Lys and a viral A-rich loop is required for efficient initiation of reverse transcription of the HIV-1 MAL isolate. In the HIV-1 HXB2 isolate, simultaneous mutations of the PBS and the A-rich loop (mutant His-AC), but not of the PBS alone (mutant His) allows the virus to stably utilize tRNA(His) as primer.
View Article and Find Full Text PDFHIV-1 utilizes cellular tRNA(3)(Lys) to prime the initiation of reverse transcription. The selective incorporation of cytoplasmic tRNA(3)(Lys) into HIV-1 particles was recently shown to involve the lysyl-tRNA synthetase, and hence, the encapsidated tRNA(3)(Lys) is likely to be aminoacylated. Here, we tested the effect of aminoacylation on the initiation of reverse transcription.
View Article and Find Full Text PDFInitiation of human immunodeficiency virus type 1 (HIV-1) reverse transcription requires specific recognition between the viral RNA (vRNA), tRNA(3)(Lys), which acts as primer, and reverse transcriptase (RT). The specificity of this ternary complex is mediated by intricate interactions between the HIV-1 RNA and tRNA(3)(Lys). Here, we compared the relative importance of the secondary structure elements of this complex in the initiation process.
View Article and Find Full Text PDFAzidothymidine (AZT) is a widely used inhibitor of type 1 human immunodeficiency virus reverse transcriptase (RT) that acts as chain terminator. Upon treatment, mutations conferring AZT resistance to RT are gradually selected. It has been shown that resistant RT is able to unblock the AZT-terminated primer by an ATP-dependent mechanism.
View Article and Find Full Text PDF